Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Chem Commun (Camb) ; 60(27): 3681-3684, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38465472

ABSTRACT

Paired Ga sites represented by the Ga-O-Si-O-Ga sequence were firstly formed intentionally in CHA-type zeolite frameworks via the transcription of pre-formed paired Ga species in a Ga-rich amorphous silica-gallia under seed-assisted hydrothermal conditions. Such paired Ga sites behaved as ion-exchange sites for capturing divalent cation, Co2+.

2.
RSC Adv ; 13(24): 16293-16299, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37266499

ABSTRACT

A comprehensive reaction-path search for the oligomerization of 5-(hydroxymethyl)furfural (HMF) based on quantum chemical calculations was conducted to clarify the mechanism of humin formation in the oxidation of HMF to furan-2,5-dicarboxylic acid (FDCA), in which humin is a typical macromolecular byproduct. The present procedure repeatedly utilizes the multi-component artificial-force-induced reaction (MC-AFIR) method to investigate multistep oligomerization reactions. Although humin formation has been reported even in reagent-grade HMFs with 97-99% purity during their storage at low temperatures, no direct addition path of two HMFs with <185 kJ mol-1 barrier has been found, suggesting humin formation is caused by a reaction with impurities. Based on the reaction conditions, we considered the reactions of HMF + H2O, HMF + OH-, and HMF + O2 and identified three reaction paths with <65 kJ mol-1 barrier for the reaction of HMF + OH-. Further, the suppression of humin formation by the acetal protection of HMF is computationally confirmed.

3.
JACS Au ; 2(2): 419-427, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35252991

ABSTRACT

The modification of metal nanoparticles (NPs) by incorporating additional metals is a key technique for developing novel catalysts. However, the effects of incorporating nonmetals into metal NPs have not been widely explored, particularly in the field of organic synthesis. In this study, we demonstrate that phosphorus (P)-alloying significantly increases the activity of precious metal NPs for the deoxygenation of sulfoxides into sulfides. In particular, ruthenium phosphide NPs exhibit an excellent catalytic activity and high durability against sulfur-poisoning, outperforming conventional catalysts. Various sulfoxides, including drug intermediates, were deoxygenated to sulfides with excellent yields. Detailed investigations into the structure-activity relationship revealed that P-alloying plays a dual role: it establishes a ligand effect on the electron transfer from Ru to P, facilitating the production of active hydrogen species, and has an ensemble effect on the formation of the Ru-P bond, preventing strong coordination with sulfide products. These effects combine to increase the catalytic performance of ruthenium phosphide NPs. These results demonstrate that P-alloying is an efficient method to improve the metal NP catalysis for diverse organic synthesis.

4.
ChemSusChem ; 15(7): e202200059, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35147297

ABSTRACT

An acetal protection strategy for 5-hydroxymethylfurfural (HMF) was used to obtain 2,5-diformyfuran (DFF) using concentrated HMF solutions and a γ-Al2 O3 -supported Ru catalyst (Ru/γ-Al2 O3 ). The HMF-acetal with 1,3-propanediol can be oxidized to DFF-acetal with a yield of 84.0 % at an HMF conversion of 94.2 % from a 50 wt % solution. In contrast, aerobic oxidation of nonprotected HMF using a 10 wt % solution afforded DFF only in a moderate yield (52.3 %). Kinetic studies indicated that the six-membered ring acetal group not only prevents side reactions but also accelerates aerobic oxidation of the -CH2 OH moiety to -CHO under retention of the acetal functionality. Organic deposits formed during the reaction explained the significant decrease in the activity of the Ru/γ-Al2 O3 catalyst, which could be recovered neither by washing in water or organic solvents, nor by a calcination-reduction treatment. Sonication of the used Ru/γ-Al2 O3 catalyst in an aqueous NaOH solution successfully removed the deposits and allowed reuse of the catalyst for at least four times without activity loss.


Subject(s)
Acetals , Furaldehyde , Furaldehyde/analogs & derivatives , Furans , Kinetics , Water
5.
Inorg Chem ; 61(8): 3379-3386, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35172569

ABSTRACT

Mechanical force can be employed not only to efficiently synthesize new materials under environmentally friendly conditions but also to change the macroscopic and microscopic properties of materials. Although coordination polymers (CPs) are attractive functional materials because they possess high structural designability and diversity, mechanical force-induced structural and functional changes of CPs are challenging issues. In this study, two one-dimensional CPs, one a densely packed nonporous CP [Cu2(bza)4(pyr)] (1) and the other a porous CP [Cu2(1-nap)4(pyr)] (2) (bza = benzoate, 1-nap = 1-naphthoate and pyr = pyrimidine), were subjected to ball-milling to assess the effect of mechanical force on their porosities. Ball mill treatments were found to induce an amorphization and cause a 30 fold enhancement of the CO2 adsorption amount at 195 K and P/P0 ∼ 1 for 1 and a slightly decreased CO2 adsorption amount for 2. The results of thorough characterization studies suggest that the formation of extrinsic micropores in addition to extrinsic mesopores/macropores between particles takes place by ball milling.

6.
Nucl Med Commun ; 43(4): 433-441, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35045549

ABSTRACT

OBJECTIVE: This study aimed to investigate the appropriate Silicon photomultiplier -PET/CT acquisition and image reconstruction conditions for each age group. METHODS: The original phantom was developed to reflect the thickness and width of the torso in each age group (neonates, 1-year-olds, 5-year-olds, 10-year-olds, 15-year-olds, and adults). The ratio of hot spheres to background radioactivity was 4:1, and the radioactivity concentration was adjusted according to the Japanese consensus guidelines for appropriate implementation of pediatric nuclear medicine examinations. We evaluated the root mean square error (RMSE) as an assessment/function of the standardized uptake value of each hot sphere, the background variability (N10 mm), the % contrast of the hot sphere (QH, 10 mm/N10 mm), and the noise equivalent counts to determine the optimal reconstruction parameters and the appropriate acquisition time. RESULTS: The minimum RMSE was obtained by setting the half-width of the Gaussian filter to 0-2 mm for iteration 1 or 2 and to 2-4 mm for iteration 3 or more. The acquisition times that satisfied the image quality equivalent to 120 s acquisitions in the adult phantoms were 30 s in the neonatal and 1-year-old phantoms, 60 s in the 5- and 10-year-old phantoms, and 75 s in the 15-year-old phantoms. CONCLUSION: This study demonstrated that good PET images could be obtained with short acquisition times when the examination is performed under appropriate reconstruction conditions.


Subject(s)
Positron Emission Tomography Computed Tomography
7.
Article in Japanese | MEDLINE | ID: mdl-34544919

ABSTRACT

PURPOSE: This study aimed to verify whether cold artifacts caused by the gap state between attenuation correction computed tomography (ACCT) and positron emission tomography (PET) data (so-called hot-in-air (HIA) state) in body trunk PET/computer tomography (CT) examinations can be improved by the Absolute-single scatter simulation (SSS), which is a scatter correction method in a phantom experiment using the high-accumulation syringe of out-of-body phantom. METHOD: PET imaging profile curves in the HIA state were evaluated using a high-accumulation syringe that simulated a urinary tract pouch encapsulated with 18F-FDG solution. The hot syringe-to-background ratio (HBR) of the syringe was changed to 5, 7, and 10. Moreover, PET image quality evaluation of the HIA state was performed with a syringe placed on the top of a NEMA IEC body phantom. Six spheres (10-37 mm in diameter) were placed inside the phantom and filled with 18F-FDG solution with a sphere-to-background ratio of 4. The evaluation items of image quality were N10 mm, QH, 10 mm / N10 mm, and recovery coefficient (RC). RESULT: The image quality tended to deteriorate as the HBR of the syringe increased in the relative-SSS, while the effect was small in the Absolute-SSS and the lowest at HBR 10. The RC10 mm of HBR 5 was 0.33 for the Relative-SSS, which was below the criterion for the Relative-SSS, but was 0.5 for the Absolute-SSS, which met the criterion. CONCLUSION: Absolute-SSS significantly improved cold artifacts caused by HIA states on body trunk PET/CT examinations, suggesting that it is highly useful both visually and quantitatively.


Subject(s)
Artifacts , Fluorodeoxyglucose F18 , Computers , Image Processing, Computer-Assisted , Phantoms, Imaging , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography
8.
JACS Au ; 1(4): 501-507, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34467312

ABSTRACT

The development of metal phosphide catalysts for organic synthesis is still in its early stages. Herein, we report the successful synthesis of single-crystal cobalt phosphide nanorods (Co2P NRs) containing coordinatively unsaturated Co-Co active sites, which serve as a new class of air-stable, highly active, and reusable heterogeneous catalysts for the reductive amination of carbonyl compounds. The Co2P NR catalyst showed high activity for the transformation of a broad range of carbonyl compounds to their corresponding primary amines using an aqueous ammonia solution or ammonium acetate as a green amination reagent at 1 bar of H2 pressure; these conditions are far milder than previously reported. The air stability and high activity of the Co2P NRs is noteworthy, as conventional Co catalysts are air-sensitive (pyrophorous) and show no activity for this transformation under mild conditions. P-alloying is therefore of considerable importance for nanoengineering air-stable and highly active non-noble-metal catalysts for organic synthesis.

9.
Chemistry ; 27(13): 4439-4446, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33283374

ABSTRACT

Non-noble metal-based hydrogenation catalysts have limited practical applications because they exhibit low activity, require harsh reaction conditions, and are unstable in air. To overcome these limitations, herein we propose the alloying of non-noble metal nanoparticles with phosphorus as a promising strategy for developing smart catalysts that exhibit both excellent activity and air stability. We synthesized a novel nickel phosphide nanoalloy (nano-Ni2 P) with coordinatively unsaturated Ni active sites. Unlike conventional air-unstable non-noble metal catalysts, nano-Ni2 P retained its metallic nature in air, and exhibited a high activity for the hydrogenation of various substrates with polar functional groups, such as aldehydes, ketones, nitriles, and nitroarenes to the desired products in excellent yields in water. Furthermore, the used nano-Ni2 P catalyst was easy to handle in air and could be reused without pretreatment, providing a simple and clean catalyst system for general hydrogenation reactions.

10.
Carbohydr Res ; 486: 107826, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31589993

ABSTRACT

An efficient and environmentally friendly system for producing 5-hydroxymethylfurfural (5-HMF) from fructose has been proposed. Substrate concentration is an important factor for practical application of the process; however, use of a high concentration of fructose has rarely been tested in the reaction because the conditions accelerate intermolecular side reactions to form adhesive humins. Humin byproducts stuck on reactor surfaces can make the production of 5-HMF on an industrial scale difficult. Therefore, developing a catalytic reaction system that can promote the synthesis of 5-HMF from highly concentrated fructose without causing adhesion of humins to reactors is needed. The present study demonstrated that activated carbons are promising materials for this system. Activated carbon catalyzed the conversion of fructose to 5-HMF without adhesion of humins to reactor vessels under practical conditions of high substrate concentration up to 73.2%. The catalytic activity was determined not only by the amount of surface weakly acidic oxygenated groups but also by the adsorption of fructose. In addition, strong adsorption of 5-HMF led to low selectivity of 5-HMF and the formation of adhesive humins. This is the first report to describe the synthesis of 5-HMF from solutions containing a fructose concentration greater than 70%.


Subject(s)
Charcoal/chemistry , Fructose/chemistry , Furaldehyde/analogs & derivatives , Water/chemistry , Catalysis , Chemistry Techniques, Synthetic , Furaldehyde/chemical synthesis , Furaldehyde/chemistry , Humic Substances , Solutions , Temperature
12.
EJNMMI Res ; 9(1): 27, 2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30888521

ABSTRACT

BACKGROUND: Evidence has shown the clinical usefulness of measuring the metastatic tumor burden of bone for prognostic assessment especially in prostate cancer; quantitative evaluation by dedicated SPECT is difficult due to the lack of attenuation correction (AC) method. We developed a novel method for attenuation correction using bone SPECT emission data (bone SPECT-based segmented attenuation correction; B-SAC) where emission data were virtually segmented into three tissues (i.e., bone, soft tissue, and air). Then, the pixel values in SPECT were replaced by 50 for the virtual soft tissue, and - 1000 for the virtual air. The replaced pixel values for the virtual bone were based on the averaged CT values of the normal vertebrae (B-SACN) or the metastatic bones (B-SACM). Subsequently, the processed SPECT data (i.e., SPECT value) were supposed to realize CT data (i.e., CT value) that were used for B-SAC. The standardized uptake values (SUVs) of 112 metastatic bone tumors in 15 patients with prostate cancer were compared between CTAC with scatter correction (SC) and resolution recovery (RR) and the following reconstruction conditions: B-SACN (+)SC(+)RR(+), B-SACM (+)SC(+)RR(+), uniform AC(UAC)(+)SC(+)RR(+), AC(-)SC(+)RR(+), and no correction (NC). RESULTS: The SUVs in the five reconstruction conditions were all correlated with those in CTAC(+)SC(+)RR(+) (p < 0.01), and the correlations between B-SACN or B-SACM and CTAC images were excellent (r > 0.94). Bland-Altman analysis showed that the mean SUV differences between CTAC (+)SC(+)RR(+) and the other five reconstructions were 0.85 ± 2.25 for B-SACN (+)SC(+)RR(+), 1.61 ± 2.36 for B-SACM (+)SC(+)RR(+), 1.54 ± 3.84 for UAC(+)SC(+)RR(+), - 3.12 ± 4.97 for AC(-)SC(+)RR(+), and - 5.96 ± 4.59 for NC. Compared to CTAC(+)SC(+)RR(+), B-SACN (+)SC(+)RR(+) showed a slight but constant overestimation (approximately 17%) of the metastatic tumor burden of bone when the same threshold of metabolic tumor volume was used. CONCLUSIONS: The results of this preliminary study suggest the potential for B-SAC to improve the quantitation of bone metastases in bone SPECT when X-ray CT or transmission CT data are not available. Considering the small but unignorable differences of lesional SUVs between CTAC and B-SAC, SUVs obtained with the current version of B-SAC seem difficult to be directly compared with those obtained with CTAC.

13.
Angew Chem Int Ed Engl ; 57(27): 8235-8239, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29761616

ABSTRACT

The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO2 -supported Au catalyst and Na2 CO3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH- and Lewis acid sites on CeO2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production.

14.
Nucl Med Commun ; 39(7): 665-671, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29672464

ABSTRACT

OBJECTIVES: Continuous bed motion (CBM) acquisition recently became available in whole-body PET/CT scanners in addition to the conventional step and shoot (S&S) acquisition. In this work, we compared the image quality between these acquisition methods using a phantom simulating periodic motion to mimic motion from patient breathing in a controlled manner. METHODS: PET image quality was assessed using the National Electrical Manufacturers Association IQ torso phantom filled with an F-FDG solution using a 4 : 1 target-to-background ratio. The phantom was scanned in two states: no motion (stationary) and with periodic motion in the axial direction with a displacement ±10 mm from the initial position. Both S&S and CBM scans were repeated 10 times in an alternating order, whereby the acquisition duration of each scan was adjusted to make the true counts approximately comparable to compensate for the decaying F-FDG. RESULTS: The recovery coefficient analysis showed that in the stationary state, the 10 mm sphere recovery did not show any difference between S&S and CBM. With motion, the recovery coefficient was lower by ∼40% for both modes of acquisition. In addition, the image-based volume analysis of the 10 mm sphere showed 1.67 (1.57-1.69) cm for S&S and 1.73 (1.66-1.83) cm for CBM (P=0.13), and there was no difference between two modes. Our study indicated that when the acquisition conditions for S&S and CBM (equivalent net trues, identical phantom motion, and identical CT image used for PET corrections) were controlled carefully, these acquisition modes resulted in equivalent image quality.


Subject(s)
Image Processing, Computer-Assisted/methods , Motion , Movement , Positron Emission Tomography Computed Tomography/instrumentation , Respiration , Phantoms, Imaging , Time Factors
15.
Clin Nucl Med ; 43(1): 71-72, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29166333

ABSTRACT

An 80-year-old man with castration-resistant prostate cancer received Ra injection to treat bone metastases. Two weeks after the injection, the patient underwent static Ra scan of the chest with medium-energy and high-energy collimators for 30 minutes each. Images obtained with the 2 collimators showed that uptake in metastatic lesions was visually clearer and semiquantitatively higher with the high-energy collimator. The use of HE collimator for Ra imaging in the early phase has been reported, and the present case suggests that in the late phase HE collimator would also be preferable to medium-energy collimator in terms of lesion-based evaluation.


Subject(s)
Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Radionuclide Imaging/instrumentation , Radium/metabolism , Aged, 80 and over , Biological Transport , Bone Neoplasms/metabolism , Humans , Male , Prostatic Neoplasms, Castration-Resistant/pathology
16.
EJNMMI Res ; 7(1): 81, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28975570

ABSTRACT

BACKGROUND: Image-based measurement of absorbed dose of Ra-223 dichloride may be useful in predicting therapeutic outcome in patients with castration-resistant prostate cancer (CRPC). In general, SPECT has been found to be more accurate than planar imaging in terms of lesion-based analysis. The aims of this study were to assess the feasibility and clinical usefulness of Ra-223 SPECT. The energy spectrum of Ra-223 and SPECT images of a cylindrical phantom with a hot rod were obtained to determine the collimator candidates and energy window settings suitable for clinical Ra-223 SPECT (basic study A). Another phantom with a tube-shaped chamber and two spheres simulating bowel activity and metastatic lesions in the lumbar spine was scanned with medium-energy general-purpose (MEGP) and high-energy general-purpose (HEGP) collimators (basic study B). Ten patients with CRPC underwent SPECT imaging 2 h after Ra-223 injection successively with MEGP and HEGP collimators in random order for 30 min each. Lesion detectability and semi-quantitative analyses of bone metastasis (i.e. lesion-to-background ratio (LBR)) were performed compared to Tc-99m HMDP SPECT. RESULTS: Basic study A revealed that an 84-keV photopeak ± 20% using the HEGP collimator offers better SPECT image quality than the other imaging conditions. Basic study B showed that uptake in one of the spheres was overestimated by overlapped activity of the tube-shaped chamber in planar imaging whereas the spheres had similar counts and significantly higher sphere-to-background ratio in SPECT. On both planar and SPECT images, HEGP gave higher image contrast than MEGP (p < 0.01). In the clinical study, Ra-223 SPECT at 84 keV ± 20% depicted more lesions with the HEGP than with the MEGP collimator (51 vs 36, p = 0.013). There was a positive correlation between LBR in Tc-99m SPECT and in Ra-223 SPECT (r = 0.67 with the MEGP and 0.69 with the HEGP collimator, p < 0.01). LBRs were significantly higher with the HEGP than with the MEGP collimator (p < 0.01). CONCLUSIONS: We recommended the use of the HEGP collimator at 84 keV ± 20% for Ra-223 SPECT imaging. Lesion-based semi-quantitative analysis in the human study revealed a good correlation between Ra-223 and Tc-99m HMDP SPECT in the early phase (2-3 h post injection).

17.
Chemistry ; 21(44): 15564-9, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26330333

ABSTRACT

Periodic mesoporous organosilica (PMO) is a unique material that has a crystal-like wall structure with coordination sites for metal complexes. A Ru complex, [RuCl2 (CO)3 ]2 , is successfully immobilized onto 2,2'-bipyridine (BPy) units of PMO to form a single-site catalyst, which has been confirmed by various physicochemical analyses. Using NaClO as an oxidant, the Ru-immobilized PMO oxidizes the tertiary C-H bonds of adamantane to the corresponding alcohols at 57 times faster than the secondary C-H bonds, thereby exhibiting remarkably high regioselectivity. Moreover, the catalyst converts cis-decalin to cis-9-decalol in a 63 % yield with complete retention of the substrate stereochemistry. The Ru catalyst can be separated by simple filtration and reused without loss of the original activity and selectivity for the oxidation reactions.

18.
Sci Technol Adv Mater ; 16(3): 034903, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27877800

ABSTRACT

In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

19.
Chem Commun (Camb) ; 50(88): 13473-6, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25234202

ABSTRACT

A new heterogeneous catalyst, hydrophobic TiO4-deposited mesoporous silica, has been designed for the efficient Mukaiyama-aldol condensation, a water-participating Lewis acid-catalyzed reaction between a hydrophobic carbonyl compound and silyl enol ether. The prepared catalyst suspended in water exhibited high catalytic performance as a reusable catalyst for the reaction without a surfactant.

20.
Chemistry ; 20(26): 8068-75, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24861208

ABSTRACT

(31)P nuclear magnetic resonance (NMR) spectroscopic measurement with trimethylphosphine oxide (TMPO) was applied to evaluate the Lewis acid catalysis of various metal triflates in water. The original (31)P NMR chemical shift and line width of TMPO is changed by the direct interaction of TMPO molecules with the Lewis acid sites of metal triflates. [Sc(OTf)3] and [In(OTf)3] had larger changes in (31)P chemical shift and line width by formation of the Lewis acid-TMPO complex than other metal triflates. It originates from the strong interaction between the Lewis acid and TMPO, which results in higher stability of [Sc(OTf)3TMPO] and [In(OTf)3TMPO] complexes than other metal triflate-TMPO complexes. The catalytic activities of [Sc(OTf)3] and [In(OTf)3] for Lewis acid-catalyzed reactions with carbonyl compounds in water were far superior to the other metal triflates, which indicates that the high stability of metal triflate-carbonyl compound complexes cause high catalytic performance for these reactions. Density functional theory (DFT) calculation suggests that low LUMO levels of [Sc(OTf)3] and [In(OTf)3] would be responsible for the formation of stable coordination intermediate with nucleophilic reactant in water.

SELECTION OF CITATIONS
SEARCH DETAIL
...