Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Igaku Butsuri ; 44(2): 29-35, 2024.
Article in Japanese | MEDLINE | ID: mdl-38945880

ABSTRACT

This is an explanatory paper on Sun Il Kwon et al., Nat. Photon. 15: 914-918, 2021 and some parts of this manuscript are translated from the paper. Medical imaging modalities such as X-ray computed tomography, Magnetic resonance imaging, positron emission tomography (PET), and single photon emission computed tomography, require image reconstruction processes, consequently constraining them to form cylindrical shapes. However, among them, only PET can use additional information, so called time of flight, on an event-by-event basis. If coincidence time resolution (CTR) of PET detectors improved to 30 ps, which corresponds to spatial resolution of 4.5 mm, directly localizing electron-positron annihilation point is possible, allowing us to circumvent image reconstruction processes and free us from the geometric constraint. We call this concept direct positron emission imaging (dPEI). We have developed ultrafast radiation detectors by focusing on Cherenkov photon detection. Furthermore, the CTR of 32 ps being equivalent to 4.8 mm spatial resolution is achieved by combining deep learning-based signal processing with the detectors. In this article, we explain how we developed the detectors and demonstrated the first dPEI using different types of phantoms, how we will tackle limitations to be addressed to make the dPEI more practical, and how dPEI will emerge as an imaging modality in nuclear medicine.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Photons , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Time Factors
2.
Nat Photonics ; 15(12): 914-918, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35663419

ABSTRACT

X-ray and gamma-ray photons are widely used for imaging but require a mathematical reconstruction step, known as tomography, to produce cross-sectional images from the measured data. Theoretically, the back-to-back annihilation photons produced by positron-electron annihilation can be directly localized in three-dimensional space using time-of-flight information without tomographic reconstruction. However, this has not yet been demonstrated due to the insufficient timing performance of available radiation detectors. Here, we develop techniques based on detecting prompt Cerenkov photons, which when combined with a convolutional neural network for timing estimation resulted in an average timing precision of 32 picoseconds, corresponding to a spatial precision of 4.8 mm. We show this is sufficient to produce cross-sectional images of a positron-emitting radionuclide directly from the detected coincident annihilation photons, without using any tomographic reconstruction algorithm. The reconstruction-free imaging demonstrated here directly localizes positron emission, and frees the design of an imaging system from the geometric and sampling constraints that normally present for tomographic reconstruction.

SELECTION OF CITATIONS
SEARCH DETAIL
...