Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 120(5): 491-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25910960

ABSTRACT

This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6-1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol.


Subject(s)
Actinomycetales/enzymology , Actinomycetales/genetics , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Amino Acid Sequence , Butyrates/metabolism , Calcium/pharmacology , Carboxylic Ester Hydrolases/chemistry , Conserved Sequence , Enzyme Stability/drug effects , Genes, Bacterial/genetics , Hydrolysis , Molecular Sequence Data , Polyesters/chemistry , Polyesters/metabolism , Substrate Specificity , Temperature
2.
Langmuir ; 30(46): 14030-8, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25365934

ABSTRACT

Both AB diblock and ABA triblock copolymers consisting of poly(L-lactide) (PLLA: A) and poly(ethylene glycol) (PEG: B) were deposited on a silicon surface on which poly(D-lactide) (PDLA) had been preimmobilized. The deposit of the diblock copolymer (PLLA-PEG) formed band structures similar to those observed when the same copolymer was directly deposited on the silicon surface. In contrast, the deposit of the triblock copolymer (PLLA-PEG-PLLA) formed many particulates scattering over the surface. When the PLLA-PEG deposit was subjected to water-soaking, the original band morphology was completely replaced by the particulate morphology that was identical to that of the PLLA-PEG-PLLA deposit. Their FT-IR analyses revealed that both copolymers had been bound through the stereocomplex (sc) formation between the preimmobilized PDLA chains and the PLLA blocks of the copolymers. Grazing-incidence small-angle X-ray scattering (GISAXS) also supported these surface morphologies. It was therefore evident that hydrophilic PEG chains can be immobilized on the PDLA-preimmobilized surface by the sc formation.


Subject(s)
Lactates/chemistry , Lactic Acid/chemistry , Models, Chemical , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...