Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 49(18): e104, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34291282

ABSTRACT

Single-cell RNA-seq (scRNA-seq) can be used to characterize cellular heterogeneity in thousands of cells. The reconstruction of a gene network based on coexpression patterns is a fundamental task in scRNA-seq analyses, and the mutual exclusivity of gene expression can be critical for understanding such heterogeneity. Here, we propose an approach for detecting communities from a genetic network constructed on the basis of coexpression properties. The community-based comparison of multiple coexpression networks enables the identification of functionally related gene clusters that cannot be fully captured through differential gene expression-based analysis. We also developed a novel metric referred to as the exclusively expressed index (EEI) that identifies mutually exclusive gene pairs from sparse scRNA-seq data. EEI quantifies and ranks the exclusive expression levels of all gene pairs from binary expression patterns while maintaining robustness against a low sequencing depth. We applied our methods to glioblastoma scRNA-seq data and found that gene communities were partially conserved after serum stimulation despite a considerable number of differentially expressed genes. We also demonstrate that the identification of mutually exclusive gene sets with EEI can improve the sensitivity of capturing cellular heterogeneity. Our methods complement existing approaches and provide new biological insights, even for a large, sparse dataset, in the single-cell analysis field.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis/methods , Transcriptome/genetics , Humans
2.
Methods Mol Biol ; 2361: 229-248, 2021.
Article in English | MEDLINE | ID: mdl-34236665

ABSTRACT

Protein-protein interaction networks have a crucial role in biological processes. Proteins perform multiple functions in forming physical and functional interactions in cellular systems. Information concerning an enormous number of protein interactions in a wide range of species has accumulated and has been integrated into various resources for molecular biology and systems biology. This chapter provides a review of the representative databases and the major computational methods used for protein-protein interactions.


Subject(s)
Protein Interaction Maps , Computational Biology , Databases, Factual , Databases, Protein , Protein Interaction Mapping , Proteins/metabolism , Systems Biology
3.
Epigenetics Chromatin ; 12(1): 77, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31856914

ABSTRACT

BACKGROUND: Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phenotypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. The underlying molecular mechanisms responsible for the diverse phenotypes of ECs from different organs are not well understood. RESULTS: To characterize the transcriptomic and epigenomic landscape in the vascular system, we cataloged gene expression and active histone marks in nine types of human ECs (generating 148 genome-wide datasets) and carried out a comprehensive analysis with chromatin interaction data. We developed a robust procedure for comparative epigenome analysis that circumvents variations at the level of the individual and technical noise derived from sample preparation under various conditions. Through this approach, we identified 3765 EC-specific enhancers, some of which were associated with disease-associated genetic variations. We also identified various candidate marker genes for each EC type. We found that the nine EC types can be divided into two subgroups, corresponding to those with upper-body origins and lower-body origins, based on their epigenomic landscape. Epigenomic variations were highly correlated with gene expression patterns, but also provided unique information. Most of the deferentially expressed genes and enhancers were cooperatively enriched in more than one EC type, suggesting that the distinct combinations of multiple genes play key roles in the diverse phenotypes across EC types. Notably, many homeobox genes were differentially expressed across EC types, and their expression was correlated with the relative position of each organ in the body. This reflects the developmental origins of ECs and their roles in angiogenesis, vasculogenesis and wound healing. CONCLUSIONS: This comprehensive analysis of epigenome characterization of EC types reveals diverse transcriptional regulation across human vascular systems. These datasets provide a valuable resource for understanding the vascular system and associated diseases.


Subject(s)
Endothelial Cells/metabolism , Epigenome , Gene Expression Regulation , Chromatin/metabolism , Databases, Genetic , Endothelial Cells/cytology , Enhancer Elements, Genetic , Genome-Wide Association Study , Histone Code , Histones/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Principal Component Analysis , Promoter Regions, Genetic
4.
PLoS One ; 13(4): e0195545, 2018.
Article in English | MEDLINE | ID: mdl-29698482

ABSTRACT

The prediction of protein complexes from protein-protein interactions (PPIs) is a well-studied problem in bioinformatics. However, the currently available PPI data is not enough to describe all known protein complexes. In this paper, we express the problem of determining the minimum number of (additional) required protein-protein interactions as a graph theoretic problem under the constraint that each complex constitutes a connected component in a PPI network. For this problem, we develop two computational methods: one is based on integer linear programming (ILPMinPPI) and the other one is based on an existing greedy-type approximation algorithm (GreedyMinPPI) originally developed in the context of communication and social networks. Since the former method is only applicable to datasets of small size, we apply the latter method to a combination of the CYC2008 protein complex dataset and each of eight PPI datasets (STRING, MINT, BioGRID, IntAct, DIP, BIND, WI-PHI, iRefIndex). The results show that the minimum number of additional required PPIs ranges from 51 (STRING) to 964 (BIND), and that even the four best PPI databases, STRING (51), BioGRID (67), WI-PHI (93) and iRefIndex (85), do not include enough PPIs to form all CYC2008 protein complexes. We also demonstrate that the proposed problem framework and our solutions can enhance the prediction accuracy of existing PPI prediction methods. ILPMinPPI can be freely downloaded from http://sunflower.kuicr.kyoto-u.ac.jp/~nakajima/.


Subject(s)
Protein Interaction Mapping/methods , Proteins/chemistry , Proteins/metabolism , Algorithms , Computational Biology , Computer Simulation
5.
Adv Bioinformatics ; 2014: 382452, 2014.
Article in English | MEDLINE | ID: mdl-24826192

ABSTRACT

We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

6.
Biomed Res Int ; 2014: 684014, 2014.
Article in English | MEDLINE | ID: mdl-24738067

ABSTRACT

Robustness in biological networks can be regarded as an important feature of living systems. A system maintains its functions against internal and external perturbations, leading to topological changes in the network with varying delays. To understand the flexibility of biological networks, we propose a novel approach to analyze time-dependent networks, based on the framework of network completion, which aims to make the minimum amount of modifications to a given network so that the resulting network is most consistent with the observed data. We have developed a novel network completion method for time-varying networks by extending our previous method for the completion of stationary networks. In particular, we introduce a double dynamic programming technique to identify change time points and required modifications. Although this extended method allows us to guarantee the optimality of the solution, this method has relatively low computational efficiency. In order to resolve this difficulty, we developed a heuristic method for speeding up the calculation of minimum least squares errors. We demonstrate the effectiveness of our proposed methods through computational experiments using synthetic data and real microarray gene expression data. The results indicate that our methods exhibit good performance in terms of completing and inferring gene association networks with time-varying structures.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Artificial Intelligence , Computational Biology , Computer Simulation , Humans
7.
ScientificWorldJournal ; 2012: 957620, 2012.
Article in English | MEDLINE | ID: mdl-23213307

ABSTRACT

We consider the problem of network completion, which is to make the minimum amount of modifications to a given network so that the resulting network is most consistent with the observed data. We employ here a certain type of differential equations as gene regulation rules in a genetic network, gene expression time series data as observed data, and deletions and additions of edges as basic modification operations. In addition, we assume that the numbers of deleted and added edges are specified. For this problem, we present a novel method using dynamic programming and least-squares fitting and show that it outputs a network with the minimum sum squared error in polynomial time if the maximum indegree of the network is bounded by a constant. We also perform computational experiments using both artificially generated and real gene expression time series data.


Subject(s)
Algorithms , Gene Expression Regulation/physiology , Models, Biological , Models, Statistical , Proteome/metabolism , Signal Transduction/physiology , Animals , Computer Simulation , Humans , Least-Squares Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...