Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(2): 108971, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38333699

ABSTRACT

In mammals, kisspeptin (Kiss1) neurons are generally considered as a sex steroid-dependent key regulator of hypothalamic-pituitary-gonadal (HPG) axis. In contrast, previous studies in non-mammalian species, especially in teleosts, propose that Kiss1 is not directly involved in the HPG axis regulation, which suggests some sex-steroid-dependent functions of kisspeptin(s) other than the HPG axis regulation in non-mammals. Here, we used knockout (KO) medaka of kisspeptin receptor-coding genes (gpr54-1 and gpr54-2) and examined possible roles of kisspeptin in the regulation of sexual behaviors. We found that the KO pairs of gpr54-1, but not gpr54-2, spawned fewer eggs and exhibited delayed spawning than wild type pairs. Detailed behavior analysis suggested that the KO females are responsible for the delayed spawning and that the KO males showed hyper-motivation for courtship. Taken together, the present finding suggests that one of the reproductive-state-dependent functions of the Kiss1 may be the control of successful sexual behaviors.

2.
Commun Biol ; 5(1): 1215, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357668

ABSTRACT

In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity.


Subject(s)
Neuropeptides , Oryzias , Animals , Female , Male , Oryzias/genetics , Receptors, Prostaglandin E , Estrogens , Neurons , Neuropeptides/genetics , Prostaglandins
3.
J Neuroendocrinol ; 34(4): e13101, 2022 04.
Article in English | MEDLINE | ID: mdl-35132714

ABSTRACT

The reproductive function of vertebrates is regulated by the hypothalamic-pituitary-gonadal axis. In sexually mature females, gonadotropin-releasing hormone (GnRH) neurons in the preoptic area (POA) are assumed to be responsible for a cyclic large increase in GnRH release, the GnRH surge, triggering a luteinizing hormone (LH) surge, which leads to ovulation. Precise temporal regulation of the preovulatory GnRH/LH surge is important for successful reproduction because ovulation should occur after follicular development. The time course of the circulating level of estrogen is correlated with the ovulatory cycle throughout vertebrates. However, the neural mechanisms underlying estrogen-induced preovulatory GnRH surge after folliculogenesis still remain unclear, especially in non-mammals. Here, we used a versatile non-mammalian model medaka for the analysis of the involvement of estrogen in the regulation of POA-GnRH (GnRH1) neurons. Electrophysiological analysis using a whole brain-pituitary in vitro preparation, which maintains the hypophysiotropic function of GnRH1 neurons intact, revealed that 17ß-estradiol (E2 ) administration recovers the ovariectomy-induced lowered GnRH1 neuronal activity in the evening, indicating the importance of E2 for upregulation of GnRH1 neuronal activity. The importance of E2 was also confirmed by the fact that GnRH1 neuronal activity was low in short-day photoperiod-conditioned females (low E2 model). However, E2 failed to upregulate the firing activity of GnRH1 neurons in the morning, suggesting the involvement of additional time-of-day signal(s) for triggering GnRH/LH surges at an appropriate timing. We also provide morphological evidence for the localization of estrogen receptor subtypes in GnRH1 neurons. In conclusion, we propose a working hypothesis in which both estrogenic and time-of-day signals act in concert to timely upregulate the firing activity of GnRH1 neurons that trigger the GnRH surge at an appropriate timing in a female-specific manner. This neuroendocrinological mechanism is suggested to be responsible for the generation of ovulatory cycles in female teleosts in general.


Subject(s)
Gonadotropin-Releasing Hormone , Oryzias , Animals , Estrogens , Female , Gonadotropins , Luteinizing Hormone , Neurons/physiology , Pituitary Hormone-Releasing Hormones
4.
Elife ; 82019 08 06.
Article in English | MEDLINE | ID: mdl-31383257

ABSTRACT

Male and female animals display innate sex-specific mating behaviors. In teleost fish, altering the adult sex steroid milieu can effectively reverse sex-typical mating behaviors, suggesting remarkable sexual lability of their brains as adults. In the teleost medaka, neuropeptide B (NPB) is expressed female-specifically in the brain nuclei implicated in mating behavior. Here, we demonstrate that NPB is a direct mediator of estrogen action on female mating behavior, acting in a female-specific but reversible manner. Analysis of regulatory mechanisms revealed that the female-specific expression of NPB is dependent on direct transcriptional activation by estrogen via an estrogen-responsive element and is reversed in response to changes in the adult sex steroid milieu. Behavioral studies of NPB knockouts revealed that female-specific NBP mediates female receptivity to male courtship. The female-specific NPB signaling identified herein is presumably a critical element of the neural circuitry underlying sexual dimorphism and lability of mating behaviors in teleosts.


Subject(s)
Neuropeptides/metabolism , Oryzias/physiology , Sexual Behavior, Animal/drug effects , Animals , Estrogens/metabolism , Female , Gene Expression Regulation/drug effects
5.
Endocrinology ; 160(4): 827-839, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30776298

ABSTRACT

Brain and behavior of teleosts are highly sexually plastic throughout life, yet the underlying neural mechanisms are largely unknown. On examining brain morphology in the teleost medaka (Oryzias latipes), we identified distinctively large neurons in the magnocellular preoptic nucleus that occurred much more abundantly in females than in males. Examination of sex-reversed medaka showed that the sexually dimorphic abundance of these neurons is dependent on gonadal phenotype, but independent of sex chromosome complement. Most of these neurons in females, but none in males, produced neuropeptide B (Npb), whose expression is known to be estrogen-dependent and associated with female sexual receptivity. In phenotypic analysis, the female-specific Npb neurons had a large euchromatic nucleus with an abundant cytoplasm containing plentiful rough endoplasmic reticulum, exhibited increased overall transcriptional activity, and typically displayed a spontaneous regular firing pattern. These phenotypes, which are probably indicative of cellular activation, were attenuated by ovariectomy and restored by estrogen replacement. Furthermore, the population of Npb-expressing neurons emerged in adult males treated with estrogen, not through frequently occurring neurogenesis in the adult teleost brain, but through the activation of preexisting, quiescent male counterpart neurons. Collectively, our results demonstrate that the morphological, transcriptional, and electrophysiological phenotypes of sexually dimorphic preoptic Npb neurons are highly dependent on estrogen and can be switched between female and male patterns. These properties of the preoptic Npb neurons presumably underpin the neural mechanism for sexual differentiation and plasticity of brain and behavior in teleosts.


Subject(s)
Brain/metabolism , Estradiol/pharmacology , Neurons/metabolism , Neuropeptides/metabolism , Sexual Behavior, Animal/physiology , Animals , Brain/drug effects , Cell Nucleus/metabolism , Endoplasmic Reticulum, Rough/metabolism , Female , Male , Neurons/drug effects , Oryzias , Phenotype
6.
Endocrinology ; 159(1): 163-183, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29053844

ABSTRACT

The kisspeptin neuronal system, which consists of a neuropeptide kisspeptin and its receptor Gpr54, is considered in mammals a key factor of reproductive regulation, the so-called hypothalamic-pituitary-gonadal (HPG) axis. However, in nonmammalian vertebrates, especially in teleosts, existence of kisspeptin regulation on the HPG axis is still controversial. In this study, we applied multidisciplinary techniques to a teleost fish, medaka, and examined possible kisspeptin regulation on the HPG axis. First, we generated knockout medaka for kisspeptin-related genes and found that they show normal fertility, gonadal maturation, and expression of gonadotropins. Moreover, the firing activity of GnRH1 neurons recorded by the patch clamp technique was not altered by kisspeptin application. Furthermore, in goldfish, in vivo kisspeptin administration did not show any positive effect on HPG axis regulation. However, as kisspeptin genes are completely conserved among vertebrates except birds, we surmised that kisspeptin should have some important nonreproductive functions in vertebrates. Therefore, to discover novel functions of kisspeptin, we generated a gpr54-1:enhanced green fluorescent protein (EGFP) transgenic medaka, whose gpr54-1-expressing cells are specifically labeled by EGFP. Analysis of neuronal projection of gpr54-1:EGFP-expressing neurons showed that these neurons in the ventrolateral preoptic area project to the pituitary and are probably involved in endocrine regulation other than gonadotropin release. Furthermore, combination of deep sequencing, histological, and electrophysiological analyses revealed various novel neural systems that are under control of kisspeptin neurons-that is, those expressing neuropeptide Yb, cholecystokinin, isotocin, vasotocin, and neuropeptide B. Thus, our new strategy to genetically label receptor-expressing neurons gives insights into various kisspeptin-dependent neuronal systems that may be conserved in vertebrates.


Subject(s)
Evolution, Molecular , Fish Proteins/metabolism , Kisspeptins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Preoptic Area/metabolism , Receptors, Kisspeptin-1/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Axons/metabolism , Axons/physiology , Crosses, Genetic , Female , Fish Proteins/genetics , Gene Knockout Techniques , Gonads/cytology , Gonads/metabolism , Gonads/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hypothalamo-Hypophyseal System/cytology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Kisspeptins/genetics , Male , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/physiology , Oryzias/genetics , Oryzias/metabolism , Patch-Clamp Techniques , Pituitary Hormones/metabolism , Preoptic Area/cytology , Preoptic Area/physiology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Kisspeptin-1/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...