Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 12(1): 12604, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35871167

ABSTRACT

Fractalkine is one of the CX3C chemokine family, and it is widely expressed in the brain including the hypothalamus. In the brain, fractalkine is expressed in neurons and binds to a CX3C chemokine receptor 1 (CX3CR1) in microglia. The hypothalamus regulates energy homeostasis of which dysregulation is associated with obesity. Therefore, we examined whether fractalkine-CX3CR1 signalling involved in regulating food intake and hypothalamic inflammation associated with obesity pathogenesis. In the present study, fractalkine significantly reduced food intake induced by several experimental stimuli and significantly increased brain-derived neurotrophic factor (BDNF) mRNA expression in the hypothalamus. Moreover, tyrosine receptor kinase B (TrkB) antagonist impaired fractalkine-induced anorexigenic actions. In addition, compared with wild-type mice, CX3CR1-deficient mice showed a significant increase in food intake and a significant decrease in BDNF mRNA expression in the hypothalamus. Mice fed a high-fat diet (HFD) for 16 weeks showed hypothalamic inflammation and reduced fractalkine mRNA expression in the hypothalamus. Intracerebroventricular administration of fractalkine significantly suppressed HFD-induced hypothalamic inflammation in mice. HFD intake for 4 weeks caused hypothalamic inflammation in CX3CR1-deficient mice, but not in wild-type mice. These findings suggest that fractalkine-CX3CR1 signalling induces anorexigenic actions via activation of the BDNF-TrkB pathway and suppresses HFD-induced hypothalamic inflammation in mice.


Subject(s)
Brain-Derived Neurotrophic Factor , Chemokine CX3CL1 , Animals , Anti-Inflammatory Agents , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology , Obesity/metabolism , RNA, Messenger
2.
Front Nutr ; 9: 852355, 2022.
Article in English | MEDLINE | ID: mdl-35571950

ABSTRACT

The effects of degalactosylated whey protein on lipopolysaccharide (LPS)-induced inflammatory responses in mice were observed in comparison with intact whey protein. Intraperitoneal administration of both intact and degalactosylated whey proteins for 5 days did not affect body weight and food intake in mice. On day 6, intraperitoneal administration of LPS induced a marked decrease in body weight 4 h later. The LPS-induced decrease in body weight was significantly suppressed by the administration of degalactosylated whey protein, but not intact whey protein. Administration of LPS also significantly increase plasma tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels, which were significantly suppressed by the administration of degalactosylated whey protein, but not intact whey protein. Moreover, the application of degalactosylated whey protein to RAW264.7 cells significantly reduced mRNA expression of toll-like receptor 4 (TLR4) and significantly increased mRNA expression of mitogen-activated protein kinase phosphatase-1 (MKP-1). The marked increased expression of TNF-α and IL-1ß in response to LPS in RAW264.7 cells was significantly suppressed by the application of degalactosylated whey protein. These results suggest that degalactosylated whey protein suppresses the effects of LPS in part by decreasing in TLR4 and increasing in MKP-1.

3.
Article in English | MEDLINE | ID: mdl-34517054

ABSTRACT

The mesolimbic dopamine system is important for the rewarding and motivational aspects of consuming rewarding and palatable food. Nicotinic receptors are present in the mesolimbic dopamine system and enhance the reinforcement of drugs of abuse. In this study, we examined the involvement of nicotine receptor subtypes in sucrose addiction in a sucrose preference paradigm. Sucrose preference and intake in mice increased in proportion to stepwise increases in sucrose concentrations. Moreover, sucrose preference and intake following sucrose withdrawal in mice were increased in comparison with the first set of trials. In the present study, α7, but not α4 and ß2, nicotinic receptor subunit mRNA was decreased in the nucleus accumbens, but not in the hypothalamus, after sucrose withdrawal and subsequent sucrose intake. Administration of an agonist for α7, but not α4 and ß2, nicotinic receptors suppressed the enhancement of sucrose preference and intake following sucrose withdrawal. These findings indicate that α7 nicotinic receptor activation suppresses sucrose addiction in a sucrose preference test in mice.


Subject(s)
Behavior, Addictive , Food , Motivation , Sucrose/administration & dosage , alpha7 Nicotinic Acetylcholine Receptor/physiology , Animals , Brain/physiopathology , Male , Mice , Mice, Inbred C57BL , Reinforcement, Psychology , Reward , Substance Withdrawal Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...