Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 134(28): 11474-80, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22716019

ABSTRACT

Drug-receptor binding interactions of four agonists, ACh, nicotine, and the smoking cessation compounds varenicline (Chantix) and cytisine (Tabex), have been evaluated at both the 2:3 and 3:2 stoichiometries of the α4ß2 nicotinic acetylcholine receptor (nAChR). Previous studies have established that unnatural amino acid mutagenesis can probe three key binding interactions at the nAChR: a cation-π interaction, and two hydrogen-bonding interactions to the protein backbone of the receptor. We find that all drugs make a cation-π interaction to TrpB of the receptor. All drugs except ACh, which lacks an N(+)H group, make a hydrogen bond to a backbone carbonyl, and ACh and nicotine behave similarly in acting as a hydrogen-bond acceptor. However, varenicline is not a hydrogen-bond acceptor to the backbone NH that interacts strongly with the other three compounds considered. In addition, we see interesting variations in hydrogen bonding interactions with cytisine that provide a rationalization for the stoichiometry selectivity seen with this compound.


Subject(s)
Nicotinic Agonists/pharmacology , Receptors, Nicotinic/drug effects , Animals , Binding Sites , Hydrogen Bonding , Rats , Receptors, Nicotinic/metabolism
2.
J Phys Chem B ; 112(4): 1130-4, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18181610

ABSTRACT

It is well-known that aqueous solutions of individual guanosine compounds can form gels through reversible self-assembly. Typically, gelation is favored at low temperature and acidic pH. We have discovered that binary mixtures of 5'-guanosine monophosphate (GMP) and guanosine (Guo) can form stable gels at neutral pH over a temperature range that can be tuned by varying the relative proportions of the hydrophobic Guo and the hydrophilic GMP in the mixture. Gelation was studied over the temperature range of 5-40 degrees C or 60 degrees C at pH 7.2 using visual detection, circular dichroism (CD) spectroscopy, and CD thermal melt experiments. Solutions with high GMP/Guo ratios behaved similar to solutions of GMP alone while solutions with low GMP/Guo formed firm gels across the entire temperature range. Most interesting were solutions between these two extremes, which were found to exhibit thermoassociative behavior; these solutions are liquid at refrigerator temperature and undergo sharp transitions to a gel only at higher temperatures. Increasing the GMP/Guo ratio and increasing the total concentration of guanosine compounds shifted the onset of gelation to higher temperatures (ranging from 20 to 40 degrees C), narrowed the temperature range of the gel phase, and sharpened the reversible phase transitions. The combination of self-assembly, reversibility, and tunability over biologically relevant temperature ranges and pH offers exciting possibilities for these simple and inexpensive materials in medical, biological, analytical, and nanotechnological applications.


Subject(s)
Guanosine/chemistry , Thermodynamics , Gels/chemistry , Molecular Structure , Photochemistry , Polymers/chemistry , Solvents , Spectrophotometry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...