Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32997844

ABSTRACT

Cohesin recently emerged as a new regulator of hematopoiesis and leukemia. In addition to cohesin, whether proteins that regulate cohesin's function have any direct role in hematopoiesis and hematologic diseases have not been fully examined. Separase, encoded by the ESPL1 gene, is an important regulator of cohesin's function. Canonically, protease activity of Separase resolves sister chromatid cohesion by cleaving cohesin subunit-Rad21 at the onset of anaphase. Using a Separase haploinsufficient mouse model, we have uncovered a novel role of Separase in hematopoiesis. We report that partial disruption of Separase distinctly alters the functional characteristics of hematopoietic stem/progenitor cells (HSPCs). Although analyses of peripheral blood and bone marrow of Espl1+/Hyp mice broadly displayed unperturbed hematopoietic parameters during normal hematopoiesis, further probing of the composition of early hematopoietic cells in Espl1+/Hyp bone marrow revealed a mild reduction in the frequencies of the Lin- Sca1+ Kit- (LSK) or LSK CD48+ CD150- multipotent hematopoietic progenitors population without a significant change in either long-term or short-term hematopoietic stem cells (HSCs) subsets at steady state. Surprisingly, however, we found that Separase haploinsufficiency promotes regeneration activity of HSCs in serial in vivo repopulation assays. In vitro colony formation assays also revealed an enhanced serial replating capacity of hematopoietic progenitors isolated from Espl1+/Hyp mice. Microarray analysis of differentially expressed genes showed that Separase haploinsufficiency in HSCs (SP-KSL) leads to enrichment of gene signatures that are upregulated in HSCs compared to committed progenitors and mature cells. Taken together, our findings demonstrate a key role of Separase in promoting hematopoietic regeneration of HSCs.

2.
PLoS One ; 6(7): e22167, 2011.
Article in English | MEDLINE | ID: mdl-21799785

ABSTRACT

BACKGROUND: Cohesin protease Separase plays a key role in faithful segregation of sister chromatids by cleaving the cohesin complex at the metaphase to anaphase transition. Homozygous deletion of ESPL1 gene that encodes Separase protein results in embryonic lethality in mice and Separase overexpression lead to aneuploidy and tumorigenesis. However, the effect of Separase haploinsufficiency has not been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined the effect of ESPL1 heterozygosity using a hypomorphic mouse model that has reduced germline Separase activity. We report that while ESPL1 mutant (ESPL1 (+/hyp)) mice have a normal phenotype, in the absence of p53, these mice develop spontaneous T- and B-cell lymphomas, and leukemia with a significantly shortened latency as compared to p53 null mice. The ESPL1 hypomorphic, p53 heterozygous transgenic mice (ESPL1(+/hyp), p53(+/-)) also show a significantly reduced life span with an altered tumor spectrum of carcinomas and sarcomas compared to p53(+/-) mice alone. Furthermore, ESPL1(+/hyp), p53(-/-) mice display significantly higher levels of genetic instability and aneuploidy in normal cells, as indicated by the abnormal metaphase counts and SKY analysis of primary splenocytes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that reduced levels of Separase act synergistically with loss of p53 in the initiation and progression of B- and T- cell lymphomas, which is aided by increased chromosomal missegregation and accumulation of genomic instability. ESPL1(+/hyp), p53(-/-) mice provide a new animal model for mechanistic study of aggressive lymphoma and also for preclinical evaluation of new agents for its therapy.


Subject(s)
Aneuploidy , Cell Cycle Proteins/metabolism , Disease Progression , Endopeptidases/metabolism , Leukemia/pathology , Lymphoma, B-Cell/pathology , Lymphoma, T-Cell/pathology , Tumor Suppressor Protein p53/deficiency , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Proliferation , DNA Damage/genetics , Endopeptidases/deficiency , Endopeptidases/genetics , Female , Humans , Leukemia/enzymology , Leukemia/genetics , Longevity/genetics , Lymphoma, B-Cell/enzymology , Lymphoma, B-Cell/genetics , Lymphoma, T-Cell/enzymology , Lymphoma, T-Cell/genetics , Mice , Neoplasm Metastasis , Phenotype , Separase , Thymus Neoplasms/enzymology , Thymus Neoplasms/genetics , Thymus Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...