Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
iScience ; 27(6): 109816, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38779480

ABSTRACT

Muscle fiber type composition (% slow-twitch and % fast-twitch fibers) is associated with metabolism, with increased slow-twitch fibers alleviating metabolic disorders. Previously, we reported that dietary fish oil intake induced a muscle fiber-type transition in a slower direction in rats. The aim of this study was to determine the functionality of eicosapentaenoic acid (EPA), a unique fatty acid in fish oil, to skeletal muscle fiber type and metabolism in rats. Here, we showed that dietary EPA promotes whole-body oxidative metabolism and improves muscle function by increasing proportion of slow-twitch type 1 fibers in rats. Transcriptomic and metabolomic analyses revealed that EPA supplementation activated the peroxisome proliferator-activated receptor δ (PPARδ) and AMP-activated protein kinase (AMPK) pathways in L6 myotube cultures, which potentially increasing slow-twitch fiber share. This highlights the role of EPA as an exercise-mimetic dietary component that improves metabolism and muscle function, with potential benefits for health and athletic performance.

3.
Monoclon Antib Immunodiagn Immunother ; 43(2): 75-80, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502827

ABSTRACT

H2b3b is one of the histone H2b isoforms that differs from canonical H2b by five to six amino acids. Previously, we identified H3t as the testis-specific histone H3 variant located in histone cluster 3, which is also the site of H2b3b. In this study, we produced monoclonal antibodies against H2b3b, using the iliac rat lymph node method for rat antibody and the immunochamber method for rabbit antibody. Immunoblot analysis confirmed that our antibodies could specifically discriminate between H2b3b and canonical H2b. Moreover, immunostaining revealed colocalization with a testicular stem cell marker, Plzf, but not with a meiotic marker, Sycp. This indicated that H2b3b is expressed in spermatogenic cells before meiosis. Our monoclonal antibodies enable further studies to reveal specific functions of H2b3b during spermatogenesis. We also hope that the established method will lead to the production of antibodies that can identify other H2b isoforms.


Subject(s)
Antibodies, Monoclonal , Histones , Male , Rabbits , Rats , Animals , Histones/analysis , Histones/chemistry , Histones/metabolism , Testis/chemistry , Testis/metabolism , Spermatogenesis , Protein Isoforms/metabolism
4.
Aging Cell ; 23(2): e14041, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985931

ABSTRACT

Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains. Direct-immunofluorescence microscopy of lower hind limb muscles from three age groups of rat, provided direct in vivo evidence for age-related increases in nitration of ECM-bound HGF, preferentially stained for anti-nitrated Y198 and Y250-HGF mAbs (raised in-house) in fast IIa and IIx myofibers. Overall, findings highlight inhibitory impacts of HGF nitration on myogenic stem cell dynamics, pioneering a cogent discussion for better understanding age-related muscle atrophy and impaired regeneration with fibrosis (including sarcopenia and frailty).


Subject(s)
Muscles , Signal Transduction , Animals , Rats , Cell Differentiation/physiology , Cell Division , Stem Cells
5.
Exp Cell Res ; 430(1): 113698, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37437770

ABSTRACT

Satellite cells are indispensable for skeletal muscle regeneration and hypertrophy by forming nascent myofibers (myotubes). They synthesize multi-potent modulator netrins (secreted subtypes: netrin-1, -3, and -4), originally found as classical neural axon guidance molecules. While netrin-1 and -3 have key roles in myogenic differentiation, the physiological significance of netrin-4 is still unclear. This study examined whether netrin-4 regulates myofiber type commitment and myotube formation. Initially, the expression profiles indicated that satellite cells isolated from the extensor digitorum longus muscle (EDL muscle: fast-twitch myofiber-abundant) expressed slightly more netrin-4 than the soleus muscle (slow-type abundant) cells. As netrin-4 knockdown inhibited both slow- and fast-type myotube formation, netrin-4 may not directly regulate myofiber type commitment. However, netrin-4 knockdown in satellite cell-derived myoblasts reduced the myotube fusion index, while exogenous netrin-4 promoted myotube formation, even though netrin-4 expression level was maximum during the initiation stage of myogenic differentiation. Furthermore, netrin-4 knockdown also inhibited MyoD (a master transcriptional factor of myogenesis) and Myomixer (a myoblast fusogenic molecule) expression. These data suggest that satellite cells synthesize netrin-4 during myogenic differentiation initiation to promote their own fusion, stimulating the MyoD-Myomixer signaling axis.


Subject(s)
Muscle Fibers, Skeletal , Satellite Cells, Skeletal Muscle , Netrin-1/metabolism , Cells, Cultured , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Cell Differentiation/physiology , Satellite Cells, Skeletal Muscle/metabolism
6.
Life (Basel) ; 13(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37240756

ABSTRACT

Skeletal muscle atrophy occurs rapidly as a result of inactivity. Although there are many reports on changes in gene expression during the early phase of muscle atrophy, the patterns of up-and downregulated gene expression after long-term and equilibrated muscle atrophy are poorly understood. In this study, we comprehensively examined the changes in gene expression in long-term denervated mouse muscles using RNA-Seq. The murine right sciatic nerve was denervated, and the mice were housed for five weeks. The cross-sectional areas of the hind limb muscles were measured using an X-ray CT system 35 days after denervation. After 28 d of denervation, the cross-sectional area of the muscle decreased to approximately 65% of that of the intact left muscle and reached a plateau. Gene expression in the soleus and extensor digitorum longus (EDL) muscles on the 36th day was analyzed using RNA-Seq and validated using RT-qPCR. RNA-Seq analysis revealed that three genes-Adora1, E230016M11Rik, and Gm10718-were upregulated and one gene-Gm20515-was downregulated in the soleus muscle; additionally, four genes-Adora1, E230016M11Rik, Pigh, and Gm15557-were upregulated and one gene-Fzd7-was downregulated in the EDL muscle (FDR < 0.05). Among these genes, E230016M11Rik, one of the long non-coding RNAs, was significantly upregulated in both the muscles. These findings indicate that E230016M11Rik could be a candidate gene for the maintenance of atrophied skeletal muscle size and an atrophic state.

7.
J Poult Sci ; 59(4): 338-347, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36348650

ABSTRACT

Smooth muscle cells are widely distributed in the digestive organs of chickens. They exist as single cells, but adhere to each other to function synchronously. In this study, the expression of the gap junction protein connexin 43 (Cx43) in chicken gizzards was investigated at embryonic days (E) 10, E15, and E18. Gizzards have an abundance of smooth muscle cells because of their thick muscle layers, which enable easy analysis of the cells. Morphological observations and expression patterns of smooth muscle markers were confirmed. Next, we observed where the markers were localized in the gizzard tissue at E10, E15, and E18. Finally, the expression pattern of Cx43 in primary cultured smooth muscle cells from E15 gizzards was investigated. The analysis revealed the expression and localization of Cx43 and calponin 1 in the smooth muscle layers, and 3D analysis revealed dynamic changes in the localization pattern of Cx43 from E10 to E15. Cultured smooth muscle cells confirmed that Cx43 was expressed in the cell membrane and cytosol. In conclusion, Cx43 expression was identified in chicken gizzards at E10, E15, and E18, which was localized differently during development. The expression was broad at E10, and became restricted at E15 and E18. Primary culture of smooth muscle cells showed that Cx43 was present in the cell membrane and cytosol. This suggests that Cx43 is actively translated into the cytosol at E10, forming a hexamer, and shuttling the cell membrane to function as a gap junction.

8.
J Biochem ; 173(1): 53-63, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36270274

ABSTRACT

The Nudt family has been identified as enzymes performing Coenzyme A to 3'5'-ADP + 4'-phospho pantetheine catalysis. The members of this family have been shown to be particularly involved in lipid metabolism, while their involvement in gene regulation through regulating transcription or mRNA metabolism has also been suggested. Here, we focused on peroxisomal NUDT7, possessing enzymatic activity similar to that of its paralog, peroxisomal NUDT19, which is involved in mRNA degradation. No reports have been published about the Nudt family in zebrafish. Our transcriptomic data showed that the Nudt family members are highly expressed around zygotic gene activation (ZGA) in developing zebrafish embryos. Therefore, we confirmed the computational prediction that the products of the nudt7 gene in zebrafish were localized in the peroxisome and highly expressed in early embryogenesis. The depletion of nudt7 genes by the CRISPR/Cas9 system did not affect development; however, it decreased the rate of transcription in ZGA. In addition, H3K27ac ChIP-seq analysis demonstrated that this decrease in transcription was correlated with the genome-wide decrease of H3K27ac level. This study suggests that peroxisomal Nudt7 functions in regulating transcription in ZGA via formation of the H3K27ac domain in active chromatin.


Subject(s)
Transcriptome , Zebrafish , Animals , Zebrafish/genetics , Chromatin , Genome , Gene Expression Profiling
9.
ACS Appl Mater Interfaces ; 14(31): 36268-36276, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35894431

ABSTRACT

Zinc oxide (ZnO) nanowire (NW) based lead sulfide (PbS) quantum dot solar cells (QDSCs), i.e., bulk heterojunction QDSCs, have been widely investigated because of the excellent photoelectronic properties of PbS QDs and ZnO NWs. To further improve the efficiency of this type of QDSCs, various passivation methods are applied to ZnO NWs to suppress interface recombination caused by trap defects. However, the comparison among passivation using organic, inorganic, and inorganic-organic hybrid materials with different properties has been less studied. In this work, the effect of passivation with inorganic Mg-doped ZnO (ZMO), organic 1,2-ethanedithiol (EDT) and both of them on ZnO NWs and PbS QDSCs are investigated. As a result, ZnO NWs purely passivated by organic material EDT show the best performance with fewer surface defects and better matched energy level with the PbS QD layer. A nearly 1.7 times larger power conversion efficiency (PCE) of 6.9% is achieved for the solar device using ZnO NW @EDT, compared with that (4.1%) of the untreated one. The work provides a promising way to impede interlayer charge recombination and facilitate carrier transport, thus enhancing the photovoltaic performance of the device.

10.
Biochem Biophys Rep ; 31: 101295, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35721345

ABSTRACT

Protein tyrosine residue (Y) nitration, a post-translational chemical-modification mode, has been associated with changes in protein activity and function; hence the accumulation of specific nitrated proteins in tissues may be used to monitor the onset and progression of pathological disorders. To verify the possible impact of nitration on postnatal muscle growth and regeneration, a pilot study was designed to examine the nitration/dysfunction of hepatocyte growth factor (HGF), a key ligand that is released from the extracellular tethering and activates myogenic stem satellite cells to enter the cell cycle upon muscle stretch and injury. Exposure of recombinant HGF (a hetero-dimer of α- and ß-chains) to peroxynitrite induces Y nitration in HGF α-chain under physiological conditions. Physiological significance of this finding was emphasized by Western blotting that showed the NK1 segment of HGF (including a K1 domain critical for signaling-receptor c-met binding) undergoes nitration with a primary target of Y198. Peroxynitrite treatment abolished HGF-agonistic activity of the NK1 segment, as revealed by in vitro c-met binding and bromodeoxyuridine-incorporation assays. Importantly, direct-immunofluorescence microscopy of rat lower hind-limb muscles from two aged-groups (2-month-old "young" and 12-month-old "retired/adult") provided in vivo evidence for age-related nitration of extracellular HGF (Y198). Overall, findings provide the insight that HGF/NK1 nitration/dysfunction perturbs myogenic stem cell dynamics and homeostasis; hence NK1 nitration may stimulate progression of muscular disorders and diseases including sarcopenia.

11.
Int J Mol Sci ; 22(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925862

ABSTRACT

Resident myogenic stem cells (satellite cells) are attracting attention for their novel roles in myofiber type regulation. In the myogenic differentiation phase, satellite cells from soleus muscle (slow fiber-abundant) synthesize and secrete higher levels of semaphorin 3A (Sema3A, a multifunctional modulator) than those derived from extensor digitorum longus (EDL; fast fiber-abundant), suggesting the role of Sema3A in forming slow-twitch myofibers. However, the regulatory mechanisms underlying fast-twitch myotube commitment remain unclear. Herein, we focused on netrin family members (netrin-1, -3, and -4) that compete with Sema3A in neurogenesis and osteogenesis. We examined whether netrins affect fast-twitch myotube generation by evaluating their expression in primary satellite cell cultures. Initially, netrins are upregulated during myogenic differentiation. Next, we compared the expression levels of netrins and their cell membrane receptors between soleus- and EDL-derived satellite cells; only netrin-1 showed higher expression in EDL-derived satellite cells than in soleus-derived satellite cells. We also performed netrin-1 knockdown experiments and additional experiments with recombinant netrin-1 in differentiated satellite cell-derived myoblasts. Netrin-1 knockdown in myoblasts substantially reduced fast-type myosin heavy chain (MyHC) expression; exogenous netrin-1 upregulated fast-type MyHC in satellite cells. Thus, netrin-1 synthesized in EDL-derived satellite cells may promote myofiber type commitment of fast muscles.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Netrin-1/metabolism , Animals , Cell Differentiation , Cells, Cultured , Mice , Mice, Inbred C57BL , Muscle Fibers, Fast-Twitch/cytology , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/cytology , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/cytology , Myosin Heavy Chains/metabolism , Primary Cell Culture/methods , Satellite Cells, Skeletal Muscle/metabolism , Semaphorin-3A/metabolism
12.
J Biochem ; 170(1): 107-117, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-33729538

ABSTRACT

Although skeletal muscle cells and adipocytes are derived from the same mesoderm, they do not transdifferentiate in vivo and are strictly distinct at the level of gene expression. To elucidate some of the regulatory mechanisms underlying this strict distinction, Pax7, a myogenic factor, was ectopically expressed in 3T3-L1 adipose progenitor cells to perturb their adipocyte differentiation potential. Transcriptome analysis showed that ectopic expression of Pax7 repressed the expression of some adipocyte genes and induced expression of some skeletal muscle cell genes. We next profiled the epigenomic state altered by Pax7 expression using H3K27ac, an activating histone mark, and H3K27me3, a repressive histone mark, as indicators. Our results show that ectopic expression of Pax7 did not result in the formation of H3K27ac at loci of skeletal muscle-related genes, but instead resulted in the formation of H3K27me3 at adipocyte-related gene loci. These findings suggest that the primary function of ectopic Pax7 expression is the formation of H3K27me3, and muscle gene expression results from secondary regulation.


Subject(s)
Epigenesis, Genetic/genetics , PAX7 Transcription Factor/genetics , 3T3-L1 Cells , Animals , Cell Differentiation/genetics , Cells, Cultured , Mice
13.
J Vet Med Sci ; 82(4): 503-540, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32147602

ABSTRACT

The Kiso horse is native to Japan and is on the verge of extinction. Here, we used microsatellites to characterize changes in their genetic diversity over time. We divided a population of Kiso horses that genotyped during 2007-2017 into three groups based on birth year: Group 1, 1980-1998 (70 horses); Group 2, 1999-2007 (61 horses); and Group 3, 2008-2017 (42 horses). We genotyped 31 microsatellites to calculate average number of alleles, observed heterozygosity, and expected heterozygosity. All indicators decreased across age groups. The results indicate that Kiso horses have been experiencing a drop in genetic diversity, and the population is expected to experience further decline unless appropriate measures are implemented.


Subject(s)
Genetic Variation , Horses/genetics , Microsatellite Repeats , Animals , Conservation of Natural Resources , Endangered Species , Female , Genotype , Japan , Male
14.
Metabolites ; 10(1)2019 Dec 22.
Article in English | MEDLINE | ID: mdl-31877908

ABSTRACT

To clarify the relationship between the fiber type composition and meat quality, we performed metabolomic analysis using porcine longissimus dorsi (LD) muscles. In the LD of pigs raised outdoors, the expression of myosin heavy chain (MyHC)1 (slow-twitch fiber marker protein) was significantly increased compared with that of MyHC1 in pigs raised in an indoor pen, suggesting that rearing outdoors could be considered as an exercise treatment. These LD samples were subjected to metabolomic analysis for examining the profile of most primary and secondary metabolites. We found that the sex of the animal and exercise stimulation had a strong influence on the metabolomic profile in the porcine skeletal muscles, and this difference in the metabolomic profile is likely in part due to the changes in the muscle fiber type. We also examined the effects of cooking (70 °C for 1 h). The effect of exercise on the metabolomic profile was also maintained in the cooked muscle tissues. Cooking treatment resulted in an increase in some of the metabolite levels while decreasing in some other metabolite levels. Thus, our study could indicate the effect of the sex of the animal, exercise stimulus, and cooking on the metabolomic profile of pork meat.

15.
Anim Sci J ; 90(6): 781-789, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30938015

ABSTRACT

Skeletal muscle fiber is largely classified into two types: type 1 (slow-twitch) and type 2 (fast-twitch) fibers. Meat quality and composition of fiber types are thought to be closely related. Previous research showed that overexpression of constitutively active peroxisome proliferator-activated receptor (PPAR)δ, a nuclear receptor present in skeletal muscle, increased type 1 fibers in mice. In this study, we found that hexane extracts of Yamabushitake mushroom (Hericium erinaceus) showed PPARδ agonistic activity in vitro. Eight-week-old C57BL/6J mice were fed a diet supplemented with 5% (w/w) freeze-dried Yamabushitake mushroom for 24 hr. After the treatment period, the extensor digitorum longus (EDL) muscles were excised. The Yamabushitake-supplemented diet up-regulated the PPARδ target genes Pdk4 and Ucp3 in mouse skeletal muscles in vivo. Furthermore, feeding the Yamabushitake-supplemented diet to mice for 8 weeks resulted in a significant increase in muscle endurance. These results indicate that Yamabushitake mushroom contains PPARδ agonistic ligands and that dietary intake of Yamabushitake mushroom could activate PPARδ in skeletal muscle of mice. Unexpectedly, we observed no significant alterations in composition of muscle fiber types between the mice fed control and Yamabushitake-supplemented diets.


Subject(s)
Agaricales/chemistry , Dietary Supplements , Muscle Strength , Muscle, Skeletal/metabolism , PPAR delta/agonists , Plant Extracts/pharmacology , Animals , Hexanes , Ligands , Male , Mice, Inbred C57BL , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , PPAR delta/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Time Factors , Uncoupling Protein 3/genetics , Uncoupling Protein 3/metabolism , Up-Regulation/drug effects
16.
Anim Sci J ; 90(4): 604-609, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30811817

ABSTRACT

Free amino acids are important components of tastants and flavor precursors in meat. To clarify the correlation between muscle fiber type and free amino acids, we determined the concentrations of various free amino acids and dipeptides in samples of different muscle tissues (n = 21), collected from 26-month-old Japanese Black steers (n = 3) at 2 days postmortem. The proportions of the myosin heavy chain (MyHC), slow (MyHC1) and fast (MyHC2) isoforms were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The contents of free amino acids and dipeptides were measured by high performance liquid chromatography (HPLC). The MyHC isoform composition varied among the tissue samples. The MyHC1 proportion ranged from 6.9% ± 3.9% to 83.3% ± 16.7%. We confirmed that there was a strong positive correlation between MyHC1 composition and total free amino acid concentrations, including those for two dipeptides. Among the 31 measured free amino acids and dipeptides, 11 showed significant positive correlations and five showed significant negative correlations with MyHC1 composition. These results suggest that a high MyHC1 content induces high free amino acid contents in bovine muscles possibly because of greater oxidative metabolism. This high level of free amino acids could contribute to the intense flavor of meat that is rich in slow-twitch fibers.


Subject(s)
Amino Acids/analysis , Amino Acids/metabolism , Food Analysis , Food Quality , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Red Meat/analysis , Animals , Cattle , Dipeptides/analysis , Dipeptides/metabolism , Male , Myosin Heavy Chains/analysis , Myosin Heavy Chains/metabolism , Protein Isoforms/analysis , Protein Isoforms/metabolism
17.
Methods Mol Biol ; 1889: 81-93, 2019.
Article in English | MEDLINE | ID: mdl-30367410

ABSTRACT

Satellite cells (SCs) are myogenic stem cells that play an important role in skeletal muscle regeneration and hypertrophy. Primary cultures of SCs are useful to analyze cell functions; however, it is difficult to obtain highly pure SCs from young rats with the conventional procedures. The purpose of this study is to establish a purification method for SC isolation from young rats and quantitatively evaluate the purification procedure employing Percoll, a common research tool to purify cells. We elucidated the purity of SCs collected by Percoll density gradient centrifugation using real-time RT-qPCR and immunocytochemistry for desmin. Percoll treatment increased the purity of SCs isolated from young rats to nearly 90%, which was comparable to that achieved with the conventional method using middle-aged rats.


Subject(s)
Cell Separation , Centrifugation, Density Gradient , Satellite Cells, Skeletal Muscle/cytology , Animals , Biomarkers , Cell Culture Techniques , Cell Separation/methods , Centrifugation, Density Gradient/methods , Immunohistochemistry , Immunophenotyping , Povidone , Rats , Real-Time Polymerase Chain Reaction , Satellite Cells, Skeletal Muscle/metabolism , Silicon Dioxide
18.
Data Brief ; 17: 1348-1351, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29876490

ABSTRACT

The data presented in this article are related to the research articles entitled "APOBEC2 negatively regulates myoblast differentiation in muscle regeneration" and "Data supporting possible implication of APOBEC2 in self-renewal functions of myogenic stem satellite cells: toward understanding the negative regulation of myoblast differentiation" (Ohtsubo et al., 2017a, 2017b) [1,2]. This article provides in vivo phenotypical data to show that Paired Box Transcription Factor 7 (Pax7)-positive cell number (per myofiber) is significantly lower in APOBEC2 (a member of apoB mRNA editing enzyme, catalytic polypeptide-like family)-knockout muscle than the control wild-type tissue at the same age of 8-wk-old in mice. The emerging results support an essential role for APOBEC2 in the self-renewal functions of myogenic stem satellite cells, namely the re-establishment of quiescent status after activation and proliferation of myoblasts.

19.
Anim Sci J ; 89(8): 1214-1219, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29900636

ABSTRACT

Myogenesis is precisely proceeded by myogenic regulatory factors. Myogenic stem cells are activated, proliferated and fused into a multinuclear myofiber. Pax7, paired box 7, one of the earliest markers during myogenesis. It has been reported that Pax7 regulates the muscle marker genes, Myf5 and MyoD toward differentiation. The possible roles of Pax7 in myogenic cells have been well researched. However, it has not yet been clarified if Pax7 itself is able to induce myogenic fate in nonmyogenic lineage cells. In this study, we performed experiments using stably expressed Pax7 in 3T3-L1 preadipocytes to elucidate if Pax7 inhibits adipogenesis. We found that Pax7 represses adipogenic markers and prevents differentiation. These cells showed decreased expression of PDGFRα, PPARγ and Fabp4 and inhibited forming lipid droplets.


Subject(s)
Adipocytes/physiology , Adipogenesis/genetics , Cell Differentiation/genetics , PAX7 Transcription Factor/physiology , 3T3-L1 Cells , Animals , Down-Regulation/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Gene Expression/genetics , Lipid Droplets , Mice , Muscle Development , MyoD Protein/physiology , Myogenic Regulatory Factor 5/physiology , PPAR gamma/genetics , PPAR gamma/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics
20.
FASEB J ; 32(3): 1428-1439, 2018 03.
Article in English | MEDLINE | ID: mdl-29127187

ABSTRACT

Apobec2 is a member of the activation-induced deaminase/apolipoprotein B mRNA editing enzyme catalytic polypeptide cytidine deaminase family expressed in differentiated skeletal and cardiac muscle. We previously reported that Apobec2 deficiency in mice leads to a shift in muscle fiber type, myopathy, and diminished muscle mass. However, the mechanisms of myopathy caused by Apobec2 deficiency and its physiologic functions are unclear. Here we show that, although Apobec2 localizes to the sarcomeric Z-lines in mouse tissue and cultured myotubes, the sarcomeric structure is not affected in Apobec2-deficient muscle. In contrast, electron microscopy reveals enlarged mitochondria and mitochondria engulfed by autophagic vacuoles, suggesting that Apobec2 deficiency causes mitochondrial defects leading to increased mitophagy in skeletal muscle. Indeed, Apobec2 deficiency results in increased reactive oxygen species generation and depolarized mitochondria, leading to mitophagy as a defensive response. Furthermore, the exercise capacity of Apobec2-/- mice is impaired, implying Apobec2 deficiency results in ongoing muscle dysfunction. The presence of rimmed vacuoles in myofibers from 10-mo-old mice suggests that the chronic muscle damage impairs normal autophagy. We conclude that Apobec2 deficiency causes mitochondrial defects that increase muscle mitophagy, leading to myopathy and atrophy. Our findings demonstrate that Apobec2 is required for mitochondrial homeostasis to maintain normal skeletal muscle function.-Sato, Y., Ohtsubo, H., Nihei, N., Kaneko, T., Sato, Y., Adachi, S.-I., Kondo, S., Nakamura, M., Mizunoya, W., Iida, H., Tatsumi, R., Rada, C., Yoshizawa, F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle.


Subject(s)
APOBEC Deaminases/deficiency , Autophagy , Mitochondria, Muscle/metabolism , Mitophagy , Muscle Proteins/deficiency , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Animals , Mice , Mice, Knockout , Mitochondria, Muscle/genetics , Mitochondria, Muscle/pathology , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...