Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Biosci Biotechnol Biochem ; 88(7): 798-803, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38702849

ABSTRACT

Two colorimetric methods are used to determine the total polyphenol contents of tea, namely, "the Folin-Ciocalteu method," defined by the International Organization for Standardization, and the "iron tartrate method," specified in the Standard Tables of Food Composition in Japan. In this study, we compared the Folin-Ciocalteu and iron tartrate methods using green tea extracts. When comparing the 2 methods, the sum of the 4 major catechins measured using high-performance liquid chromatography (HPLC) was regarded as the standard value. The total polyphenol contents obtained using the Folin-Ciocalteu method were closer to the HPLC value than those obtained using the iron tartrate method. However, the iron tartrate method is adequate if the current official method is improved, that is, our results suggest that the coefficients appropriate for common green tea varieties, as well as the degree and duration of cover cultivation, in the official iron tartrate method must be considered.


Subject(s)
Colorimetry , Plant Extracts , Polyphenols , Tea , Polyphenols/analysis , Tea/chemistry , Colorimetry/methods , Plant Extracts/analysis , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods
2.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255794

ABSTRACT

Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP.


Subject(s)
Chlorogenic Acid , Hydroquinones , Polyphenols , Animals , Mice , Chlorogenic Acid/pharmacology , Polyphenols/pharmacology , Mutagens/toxicity , Hydrogen Peroxide , Oxidative Stress , DNA
3.
Biology (Basel) ; 12(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37508408

ABSTRACT

The functionality of food-derived nucleotides is revealed when nucleotide components are ingested in emergency situations, such as during stress loading, though it is difficult to elucidate the physiological function of dietary nucleotide supplementation. Using a stress load experimental system utilizing territoriality among male mice, we evaluated whether DNA sodium salt derived from salmon milt (DNA-Na) has stress-relieving effects. It was found that stress was reduced in mice fed a diet containing a 1% concentration of DNA-Na, but this was insignificant for yeast-derived RNA. Next, we attempted to elucidate the anti-stress effects of DNA-Na using another experimental system, in which mice were subjected to chronic crowding stress associated with aging: six mice in a cage were kept until they were 7 months of age, resulting in overcrowding. We compared these older mice with 2-month-old mice that were kept in groups for only one month. The results show that the expression of genes associated with hippocampal inflammation was increased in the older mice, whereas the expression of these genes was suppressed in the DNA-Na-fed group. This suggests that dietary DNA intake may suppress inflammation in the brain caused by stress, which increases with age.

4.
Molecules ; 28(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37513300

ABSTRACT

Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases that play important roles in a variety of diseases, including cancer, cardiovascular disease, diabetes, obesity, and brain diseases. Dietary polyphenols are thought to have a variety of beneficial effects on these diseases characterized by inflammation. Clinical studies have demonstrated that MMPs are in most cases upregulated in various inflammatory diseases, including osteoarthritis, rheumatoid arthritis, inflammatory bowel disease, and Alzheimer's disease. Studies using patient-derived human samples, animal studies, and cellular experiments have suggested that polyphenols may be beneficial against inflammatory diseases by suppressing MMP gene expression and enzyme activity. One important mechanism by which polyphenols exert their activity is the downregulation of reactive oxygen species that promote MMP expression. Another important mechanism is the direct binding of polyphenols to MMPs and their inhibition of enzyme activity. Molecular docking analyses have provided a structural basis for the interaction between polyphenols and MMPs and will help to explore new polyphenol-based drugs with anti-inflammatory properties.


Subject(s)
Antioxidants , Polyphenols , Animals , Humans , Molecular Docking Simulation , Polyphenols/pharmacology , Polyphenols/chemistry , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Matrix Metalloproteinases
5.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37047250

ABSTRACT

The sodium-glucose cotransporter 2 (SGLT2) mainly carries out glucose reabsorption in the kidney. Familial renal glycosuria, which is a mutation of SGLT2, is known to excrete glucose in the urine, but blood glucose levels are almost normal. Therefore, SGLT2 inhibitors are attracting attention as a new therapeutic drug for diabetes, which is increasing worldwide. In fact, SGLT2 inhibitors not only suppress hyperglycemia but also reduce renal, heart, and cardiovascular diseases. However, whether long-term SGLT2 inhibition is completely harmless requires further investigation. In this context, mice with mutations in SGLT2 have been generated and detailed studies are being conducted, e.g., the SGLT2-/- mouse, Sweet Pee mouse, Jimbee mouse, and SAMP10-ΔSglt2 mouse. Biological changes associated with SGLT2 mutations have been reported in these model mice, suggesting that SGLT2 is not only responsible for sugar reabsorption but is also related to other functions, such as bone metabolism, longevity, and cognitive functions. In this review, we present the characteristics of these mutant mice. Moreover, because the relationship between diabetes and Alzheimer's disease has been discussed, we examined the relationship between changes in glucose homeostasis and the amyloid precursor protein in SGLT2 mutant mice.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Mice , Animals , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Kidney/metabolism , Disease Models, Animal , Mutation , Hypoglycemic Agents/pharmacology
6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835393

ABSTRACT

Group rearing is a common housing condition, but group-housed older mice show increased adrenal hypertrophy, a marker of stress. However, the ingestion of theanine, an amino acid unique to tea leaves, suppressed stress. We aimed to elucidate the mechanism of theanine's stress-reducing effects using group-reared older mice. The expression of repressor element 1 silencing transcription factor (REST), which represses excitability-related genes, was increased in the hippocampus of group-reared older mice, whereas the expression of neuronal PAS domain protein 4 (Npas4), which is involved in the regulation of excitation and inhibition in the brain, was lower in the hippocampus of older group-reared mice than in same-aged two-to-a-house mice. That is, the expression patterns of REST and Npas4 were found to be just inversely correlated. On the other hand, the expression levels of the glucocorticoid receptor and DNA methyltransferase, which suppress Npas4 transcription, were higher in the older group-housed mice. In mice fed theanine, the stress response was reduced and Npas4 expression tended to be increased. These results suggest that Npas4 expression was suppressed by the increased expression of REST and Npas4 downregulators in the group-fed older mice, but that theanine avoids the decrease in Npas4 expression by suppressing the expression of Npas4 transcriptional repressors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Camellia sinensis , Glutamates , Plant Leaves , Stress, Psychological , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Leaves/chemistry , Glutamates/pharmacology , Glutamates/therapeutic use , Camellia sinensis/chemistry , Stress, Psychological/therapy
7.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677584

ABSTRACT

Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and ß-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1ß. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.


Subject(s)
Antineoplastic Agents , Catechin , Matrix Metalloproteinases , NF-kappa B , Catechin/pharmacology , Matrix Metalloproteinases/metabolism , NF-kappa B/metabolism , Signal Transduction , Tea/chemistry , Antineoplastic Agents/pharmacology
8.
Nutrients ; 14(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889906

ABSTRACT

Being in a prolonged depressed state increases the risk of developing depression. To investigate whether green tea intake is effective in improving depression-like moods, we used an experimental animal model of depression with lipopolysaccharide (LPS) and clarified the effects of green tea on the biological stress response and inflammation in the brain. Regarding the stress reduction effect of green tea, we found that the sum of caffeine (C) and epigallocatechin gallate (E) relative to the sum of theanine (T) and arginine (A), the major components of green tea, or the CE/TA ratio, is important. The results showed that depression-like behavior, adrenal hypertrophy as a typical stress response, and brain inflammation were suppressed in mice fed green tea components with CE/TA ratios of 2 to 8. In addition, the expression of Npas4, which is reduced in anxiety and depression, was maintained at the same level as controls in mice that consumed green tea with a CE/TA ratio of 4. In clinical human trials, the consumption of green tea with CE/TA ratios of 3.9 and 4.7 reduced susceptibility to subjective depression. These results suggest that the daily consumption of green tea with a CE/TA ratio of 4-5 is beneficial to improving depressed mood.


Subject(s)
Catechin , Tea , Animals , Arginine/pharmacology , Basic Helix-Loop-Helix Transcription Factors , Brain , Caffeine/analysis , Caffeine/pharmacology , Catechin/pharmacology , Humans , Hypertrophy , Mice
9.
Molecules ; 27(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744941

ABSTRACT

Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.


Subject(s)
Catechin , MicroRNAs , Neoplasms , Animals , Catechin/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/drug therapy , Polyphenols/pharmacology , Reactive Oxygen Species , Resveratrol , Tumor Microenvironment
10.
Int J Mol Sci ; 23(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35628642

ABSTRACT

Mice feed with coffee polyphenols (CPP, chlorogenic acid) and milk fat globule membrane (MFGM) has increased survival rates and helps retain long-term memory. In the cerebral cortex of aged mice, CPP intake decreased the expression of the proinflammatory cytokine TNF-α, and lysosomal enzyme cathepsin B. The suppression of inflammation in the brain during aging was thought to result in the suppression of the repressor element 1-silencing transcription factor (REST) and prevention of brain aging. In contrast, CPP increased the expression of REST, cAMP-responsive element binding (CREB) and transforming growth factor ß1 (TGF-ß1) in the young hippocampus. The increased expression of these factors may contribute to the induction of neuronal differentiation and the suppression of memory decline with aging. Taken together, these results suggest that CPP increases CREB in the young hippocampus and suppresses inflammation in the old brain, resulting in a preventive effect on brain aging. The endotoxin levels were not elevated in the serum of aged mice. Although the mechanism of action of MFGM has not yet been elucidated, the increase in survival rate with both CPP and MFGM intake suggests that adding milk to coffee may improve not only the taste, but also the function.


Subject(s)
Chlorogenic Acid , Polyphenols , Animals , Brain , Chlorogenic Acid/pharmacology , Coffee , Glycolipids , Glycoproteins , Inflammation , Lipid Droplets , Mice , Polyphenols/pharmacology
11.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443485

ABSTRACT

Epidemiological studies have demonstrated that the intake of green tea is effective in reducing the risk of dementia. The most important component of green tea is epigallocatechin gallate (EGCG). Both EGCG and epigallocatechin (EGC) have been suggested to cross the blood-brain barrier to reach the brain parenchyma, but EGCG has been found to be more effective than EGC in promoting neuronal differentiation. It has also been suggested that the products of EGCG decomposition by the intestinal microbiota promote the differentiation of nerve cells and that both EGCG and its degradation products act on nerve cells with a time lag. On the other hand, the free amino acids theanine and arginine contained in green tea have stress-reducing effects. While long-term stress accelerates the aging of the brain, theanine and arginine suppress the aging of the brain due to their anti-stress effect. Since this effect is counteracted by EGCG and caffeine, the ratios between these green tea components are important for the anti-stress action. In this review, we describe how green tea suppresses brain aging, through the activation of nerve cells by both EGCG and its degradation products, and the reductions in stress achieved by theanine and arginine.


Subject(s)
Aging/metabolism , Brain/metabolism , Tea/chemistry , Aging/drug effects , Animals , Arginine/pharmacology , Brain/drug effects , Catechin/chemistry , Catechin/metabolism , Catechin/pharmacology , Glutamates/pharmacology , Humans
12.
Int J Mol Sci ; 22(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419170

ABSTRACT

The anti-stress potential of dietary L-arginine (Arg) was assessed in psychosocially stress-loaded senescence-accelerated (SAMP10) mice. Although this strain of mouse is sensitive to stress, daily administration of Arg at 3 mg/kg significantly suppressed aging-related cognitive decline and behavioral depression at nine months of age and counteracted stress-induced shortened lifespan. To investigate the mechanism of the anti-stress effect of Arg in the brain, early changes in oxidative damage and gene expression levels were measured using SAMP10 mice that were stress-loaded for three days. Increased lipid peroxidation in the brains of stressed mice was significantly lowered by Arg intake. Several genes associated with oxidative stress response and neuronal excitotoxic cell death, including Nr4a1, Arc, and Cyr61, remarkably increased in response to psychosocial stress; however, their expression was significantly suppressed in mice that ingested Arg even under stress conditions. In contrast, the genes that maintain mitochondrial functions and neuronal survival, including Hba-a2 and Hbb-b2, were significantly increased in mice that ingested Arg. These results indicate that Arg reduces oxidative damage and enhances mitochondrial functions in the brain. We suggest that the daily intake of Arg plays important roles in reducing stress-induced brain damage and slowing aging.


Subject(s)
Arginine/pharmacology , Cognitive Dysfunction/prevention & control , Depression/prevention & control , Longevity/drug effects , Stress, Physiological/drug effects , Animals , Arginine/administration & dosage , Cognitive Dysfunction/physiopathology , Cysteine-Rich Protein 61/genetics , Depression/physiopathology , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiology , Learning/drug effects , Longevity/physiology , Male , Mice, Inbred C57BL , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Oxidative Stress/drug effects , Stress, Physiological/physiology , Survival Analysis
13.
Molecules ; 26(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466849

ABSTRACT

Many observational and clinical studies have shown that consumption of diets rich in plant polyphenols have beneficial effects on various diseases such as cancer, obesity, diabetes, cardiovascular diseases, and neurodegenerative diseases (NDDs). Animal and cellular studies have indicated that these polyphenolic compounds contribute to such effects. The representative polyphenols are epigallocatechin-3-O-gallate in tea, chlorogenic acids in coffee, resveratrol in wine, and curcumin in curry. The results of human studies have suggested the beneficial effects of consumption of these foods on NDDs including Alzheimer's and Parkinson's diseases, and cellular animal experiments have provided molecular basis to indicate contribution of these representative polyphenols to these effects. This article provides updated information on the effects of these foods and their polyphenols on NDDs with discussions on mechanistic aspects of their actions mainly based on the findings derived from basic experiments.


Subject(s)
Catechin/analogs & derivatives , Chlorogenic Acid/therapeutic use , Curcumin/therapeutic use , Neurodegenerative Diseases/drug therapy , Resveratrol/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Catechin/therapeutic use , Humans , Neuroprotective Agents/therapeutic use
14.
Int J Mol Sci ; 22(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379343

ABSTRACT

By comprehensively measuring changes in metabolites in the hippocampus of stress-loaded mice, we investigated the reasons for stress vulnerability and the effect of theanine, i.e., an abundant amino acid in tea leaves, on the metabolism. Stress sensitivity was higher in senescence-accelerated mouse prone 10 (SAMP10) mice than in normal ddY mice when these mice were loaded with stress on the basis of territorial consciousness in males. Group housing was used as the low-stress condition reference. Among the statistically altered metabolites, depression-related kynurenine and excitability-related histamine were significantly higher in SAMP10 mice than in ddY mice. In contrast, carnosine, which has antidepressant-like activity, and ornithine, which has antistress effects, were significantly lower in SAMP10 mice than in ddY mice. The ingestion of theanine, an excellent antistress amino acid, modulated the levels of kynurenine, histamine, and carnosine only in the stress-loaded SAMP10 mice and not in the group-housing mice. Depression-like behavior was suppressed in mice that had ingested theanine only under stress loading. Taken together, changes in these metabolites, such as kynurenine, histamine, carnosine, and ornithine, were suggested to be associated with the stress vulnerability and depression-like behavior of stressed SAMP10 mice. It was also shown that theanine action appears in the metabolism of mice only under stress loading.


Subject(s)
Depression/drug therapy , Glutamates/therapeutic use , Hippocampus/drug effects , Stress, Psychological/drug therapy , Animals , Arginase/metabolism , Camellia sinensis , Drug Evaluation, Preclinical , Glutamates/pharmacology , Hippocampus/metabolism , Histidine Decarboxylase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mice , Phytotherapy , Stress, Psychological/metabolism , Tryptophan Oxygenase/metabolism
15.
Molecules ; 25(19)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027981

ABSTRACT

Tea and coffee are consumed worldwide and epidemiological and clinical studies have shown their health beneficial effects, including anti-cancer effects. Epigallocatechin gallate (EGCG) and chlorogenic acid (CGA) are the major components of green tea polyphenols and coffee polyphenols, respectively, and believed to be responsible for most of these effects. Although a large number of cell-based and animal experiments have provided convincing evidence to support the anti-cancer effects of green tea, coffee, EGCG, and CGA, human studies are still controversial and some studies have suggested even an increased risk for certain types of cancers such as esophageal and gynecological cancers with green tea consumption and bladder and lung cancers with coffee consumption. The reason for these inconsistent results may have been arisen from various confounding factors. Cell-based and animal studies have proposed several mechanisms whereby EGCG and CGA exert their anti-cancer effects. These components appear to share the common mechanisms, among which one related to reactive oxygen species is perhaps the most attractive. Meanwhile, EGCG and CGA have also different target molecules which might explain the site-specific differences of anti-cancer effects found in human studies. Further studies will be necessary to clarify what is the mechanism to cause such differences between green tea and coffee.


Subject(s)
Antineoplastic Agents, Phytogenic , Antioxidants , Catechin/analogs & derivatives , Chlorogenic Acid , Coffee/chemistry , Neoplasms/drug therapy , Tea/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Antioxidants/chemistry , Antioxidants/therapeutic use , Catechin/chemistry , Catechin/therapeutic use , Chlorogenic Acid/chemistry , Chlorogenic Acid/therapeutic use , Humans , Neoplasms/metabolism , Neoplasms/pathology
16.
Int J Mol Sci ; 21(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759773

ABSTRACT

Senescence-accelerated mouse prone 10 (SAMP10) exhibits cerebral atrophy and depression-like behavior. A line of SAMP10 with spontaneous mutation in the Slc5a2 gene encoding the sodium-glucose cotransporter (SGLT) 2 was named SAMP10/TaSlc-Slc5a2slc (SAMP10-ΔSglt2) and was identified as a renal diabetes model. In contrast, a line of SAMP10 with no mutation in SGLT2 (SAMP10/TaIdrSlc, SAMP10(+)) was recently established under a specific pathogen-free condition. Here, we examined the mutation effect in SGLT2 on brain function and longevity. No differences were found in the survival curve, depression-like behavior, and age-related brain atrophy between SAMP10-ΔSglt2 and SAMP10(+). However, memory retention was lower in SAMP10-ΔSglt2 mice than SAMP10(+). Amyloid beta (A4) precursor-like protein 1 (Aplp1) expression was significantly lower in the hippocampus of SAMP10-ΔSGLT2 than in SAMP10(+) at 2 months of age, but was similar at 12 months of age. CaM kinase-like vesicle association (Camkv) expression was remarkably lower in SAMP10(+). These genes have been reported to be involved in dendrite function. Amyloid precursor proteins have been reported to involve in maintaining homeostasis of glucose and insulin. These results suggest that mutation in SGLT2 results in down-regulation of Aplp1 in young age, which can lead to poor memory retention in old age.


Subject(s)
Aging/genetics , Amyloid beta-Protein Precursor/genetics , Memory Disorders/genetics , Neurodegenerative Diseases/genetics , Sodium-Glucose Transporter 2/genetics , Age Factors , Aging/pathology , Animals , Brain/metabolism , Brain/pathology , Cellular Senescence/genetics , Gene Expression Regulation/genetics , Glucose/metabolism , Humans , Memory/physiology , Memory Disorders/pathology , Mice , Mutation/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Synapsins/metabolism
17.
Molecules ; 25(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756488

ABSTRACT

The young leaves of green tea become lighter in color than usual when protected from sunlight by a shading net for about two weeks while growing. These leaves are called "shaded white leaf tea" or SWLT. In the eluate of SWLT, the amount of amino acids (361 mg/L) was significantly higher than that in regular tea (53.5 mg/L). Since theanine and arginine, the first and second most abundant amino acids in SWLT, have significant antistress effects, we examined the antistress effect of SWLT on humans. SWLT or placebo green tea (3 g) was eluted with room-temperature water (500 mL). Participants consumed the tea for one week prior to pharmacy practice and continued for 10 days in the practice period. The state-trait anxiety inventory, an anxiety questionnaire, tended to be scored lower in the SWLT group than the placebo, but other stress markers showed no differences. The effect of the difference in SWLT components examined with mice showed that aspartic acid and asparagine, which are abundant in SWLT, counteracted the antistress effects of theanine and arginine. Large amounts of caffeine also interfered with SWLT's antistress effect. Thus, SWLT, which is high in caffeine and amino acids, suppressed depressant behavior in mice.


Subject(s)
Amino Acids/chemistry , Antidepressive Agents/therapeutic use , Caffeine/chemistry , Stress, Psychological/drug therapy , Tea/chemistry , Amino Acids/isolation & purification , Amylases/metabolism , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/isolation & purification , Antidepressive Agents/pharmacology , Arginine/isolation & purification , Arginine/therapeutic use , Behavior, Animal/drug effects , Caffeine/isolation & purification , Catechin/chemistry , Catechin/isolation & purification , Female , Glutamates/isolation & purification , Glutamates/therapeutic use , Humans , Male , Mice , Placebo Effect , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Stress, Psychological/pathology , Tea/metabolism , Young Adult
18.
Molecules ; 25(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218277

ABSTRACT

Senescence-accelerated mouse prone 10 (SAMP10) mice, after ingesting green tea catechins (GT-catechin, 60 mg/kg), were found to have suppressed aging-related decline in brain function. The dose dependence of brain function on GT-catechin indicated that intake of 1 mg/kg or more suppressed cognitive decline and a shortened lifespan. Mice that ingested 1 mg/kg GT-catechin had the longest median survival, but the dose was less effective at suppressing cognitive decline. The optimal dose for improving memory acquisition was 60 mg/kg, and memory retention was higher in mice that ingested 30 mg/kg or more. To elucidate the mechanism by which cognitive decline is suppressed by GT-catechin, changes in gene expression in the hippocampus of SAMP10 mice one month after ingesting GT-catechin were analyzed. The results show that the expression of immediate-early genes such as nuclear receptor subfamily 4 (Nr4a), FBJ osteosarcoma oncogene (Fos), early growth response 1 (Egr1), neuronal PAS domain protein 4 (Npas4), and cysteine-rich protein 61 (Cyr61) was significantly increased. These results suggest that GT-catechin suppresses age-related cognitive decline via increased expression of immediate-early genes that are involved in long-term changes in plasticity of synapses and neuronal circuits.


Subject(s)
Catechin/pharmacology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/prevention & control , Genes, Immediate-Early , Hippocampus/metabolism , Longevity , Tea/chemistry , Aging/pathology , Animals , Learning/drug effects , Male , Memory, Long-Term/drug effects , Mice , Transcriptome/drug effects , Transcriptome/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
19.
Nutrients ; 12(1)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936294

ABSTRACT

Chronic stress can impair the health of human brains. An important strategy that may prevent the accumulation of stress may be the consumption of functional foods. When senescence-accelerated mice prone 10 (SAMP10), a stress-sensitive strain, were loaded with stress using imposed male mouse territoriality, brain volume decreased. However, in mice that ingested theanine (6 mg/kg), the main amino acid in tea leaves, brain atrophy was suppressed, even under stress. On the other hand, brain atrophy was not clearly observed in a mouse strain that aged normally (Slc:ddY). The expression level of the transcription factor Npas4 (neuronal PAS domain protein 4), which regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity, decreased in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but increased in mice that ingested theanine. Lipocalin 2 (Lcn2), the expression of which increased in response to stress, was significantly high in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but not in mice that ingested theanine. These data suggest that Npas4 and Lcn2 are involved in the brain atrophy and stress vulnerability of SAMP10 mice, which are prevented by the consumption of theanine, causing changes in the expression of these genes.


Subject(s)
Brain Diseases/prevention & control , Glutamates/pharmacology , Stress, Psychological , Tea/chemistry , Animals , Atrophy/prevention & control , Glutamates/chemistry , Hippocampus/drug effects , Housing, Animal , Male , Mice
20.
Front Plant Sci ; 11: 611140, 2020.
Article in English | MEDLINE | ID: mdl-33537046

ABSTRACT

Plant albinism causes the etiolation of leaves because of factors such as deficiency of chloroplasts or chlorophylls. In general, albino tea leaves accumulate higher free amino acid (FAA) contents than do conventional green tea leaves. To explore the metabolic changes of etiolated leaves (EL) in the light-sensitive Japanese albino tea cultivar "Koganemidori," we performed integrated metabolome and transcriptome analyses by comparing EL with green leaves induced by bud-sport mutation (BM) or shading treatments (S-EL). Comparative omics analyses indicated that etiolation-induced molecular responses were independent of the light environment and were largely influenced by the etiolation itself. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and pathway analyses revealed the downregulation of genes involved in chloroplast development and chlorophyll biosynthesis and upregulation of protein degradation-related pathways, such as the ubiquitin-proteasome system and autophagy in EL. Metabolome analysis showed that most quantified FAAs in EL were highly accumulated compared with those in BM and S-EL. Genes involved in the tricarboxylic acid (TCA) cycle, nitrogen assimilation, and the urea cycle, including the drastically downregulated Arginase-1 homolog, which functions in nitrogen excretion for recycling, showed lower expression levels in EL. The high FAA contents in EL might result from the increased FAA pool and nitrogen source contributed by protein degradation, low N consumption, and stagnation of the urea cycle rather than through enhanced amino acid biosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...