Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 100(6): 965-968, 2024.
Article in English | MEDLINE | ID: mdl-38631045

ABSTRACT

The 66th Annual Meeting of the Japanese Radiation Research Society took place in Tokyo, Japan, from 6 to 8 November 2023. The meeting covered a wide range of radiation research topics, including basic mechanisms involved in radiation effects, translational research, and epidemiology. Some sessions were jointly organized with the International Commission on Radiological Protection (ICRP). Here, we report on some plenary and keynote talks presented at the meeting.


Subject(s)
Radiobiology , Animals , Humans , Japan , Radiation Protection , Societies, Scientific , Tokyo
2.
Cancer Sci ; 113(10): 3362-3375, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35851737

ABSTRACT

Women who are heterozygous for deleterious BRCA1 germline mutations harbor a high risk of hereditary breast cancer. Previous Brca1-heterozygous animal models do not recapitulate the breast cancer phenotype, and thus all currently used knockout models adopt conditional, mammary-specific homozygous Brca1 loss or addition of Trp53 deficiency. Herein, we report the creation and characterization of a novel Brca1 mutant rat model harboring the germline L63X mutation, which mimics a founder mutation in Japan, through CRISPR-Cas9-based genome editing. Homozygotes (Brca1L63X/L63X ) were embryonic lethal, whereas heterozygotes (Brca1L63X/+ ) showed apparently normal development. Without carcinogen exposure, heterozygotes developed mammary carcinoma at a comparable incidence rate with their wild-type (WT) littermates during their lifetime. Intraperitoneal injection of 1-methyl-1-nitrosourea (25 or 50 mg/kg) at 7 weeks of age induced mammary carcinogenesis at comparable levels among the heterozygotes and their littermates. After exposure to ionizing radiation (0.1-2 Gy) at 7 weeks of age, the heterozygotes, but not WT littermates, displayed dose-dependent mammary carcinogenesis with 0.8 Gy-1 excess in hazard ratio during their middle age; the relative susceptibility of the heterozygotes was more prominent when rats were irradiated at 3 weeks of age. The heterozygotes had tumors with a lower estrogen receptor α immunopositivity and no evidence of somatic mutations of the WT allele. The Brca1L63X/+ rats thus offer the first single-mutation, heterozygous model of BRCA1-associated breast cancer, especially with exposure to a DNA break-inducing carcinogen. This implies that such carcinogens are causative and a key to breast cancer prevention in individuals who carry high-risk BRCA1 mutations.


Subject(s)
Breast Neoplasms , Neoplasms, Radiation-Induced , Animals , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carcinogens , Cell Transformation, Neoplastic , Estrogen Receptor alpha/genetics , Female , Germ-Line Mutation , Humans , Middle Aged , Neoplasms, Radiation-Induced/genetics , Rats
3.
Cell Immunol ; 371: 104456, 2022 01.
Article in English | MEDLINE | ID: mdl-34798556

ABSTRACT

Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins with actin filaments in the cell cortex. Hemizygous mutations in the X-linked moesin gene are associated with primary immunodeficiency with T and B cell lymphopenia, which also affects natural killer (NK) cells in most cases. We previously showed that moesin deficiency in mice substantially affects lymphocyte homeostasis, but its impact on NK cells remains unexplored. Here, we found that in moesin-deficient mice, NK cells were decreased in the peripheral blood and bone marrow but increased in the spleen. Analysis of female heterozygous mice showed a selective advantage for moesin-expressing NK cells in the blood. Moesin-deficient NK cells exhibited increased cell death and impaired signaling in response to IL-15, suggesting that moesin regulates NK cell survival through IL-15-mediated signaling. Our findings thus identify moesin as an NK cell homeostasis regulator in vivo.


Subject(s)
Homeostasis/immunology , Interleukin-15/immunology , Killer Cells, Natural/immunology , Microfilament Proteins/genetics , Actin Cytoskeleton/metabolism , Animals , Apoptosis/genetics , Cell Membrane/metabolism , Lymphocyte Count , Lymphopenia/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Signal Transduction/immunology , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...