Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Virol ; 90(14): 6276-6290, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27122584

ABSTRACT

UNLABELLED: Identifying human immunodeficiency virus type 1 (HIV-1) control mechanisms by neutralizing antibodies (NAbs) is critical for anti-HIV-1 strategies. Recent in vivo studies on animals infected with simian immunodeficiency virus (SIV) and related viruses have shown the efficacy of postinfection NAb passive immunization for viremia reduction, and one suggested mechanism is its occurrence through modulation of cellular immune responses. Here, we describe SIV control in macaques showing biphasic CD8(+) cytotoxic T lymphocyte (CTL) responses following acute-phase NAb passive immunization. Analysis of four SIVmac239-infected rhesus macaque pairs matched with major histocompatibility complex class I haplotypes found that counterparts receiving day 7 anti-SIV polyclonal NAb infusion all suppressed viremia for up to 2 years without accumulating viral CTL escape mutations. In the first phase of primary viremia control attainment, CD8(+) cells had high capacities to suppress SIVs carrying CTL escape mutations. Conversely, in the second, sustained phase of SIV control, CTL responses converged on a pattern of immunodominant CTL preservation. During this sustained phase of viral control, SIV epitope-specific CTLs showed retention of phosphorylated extracellular signal-related kinase (ERK)(hi)/phosphorylated AMP-activated protein kinase (AMPK)(lo) subpopulations, implying their correlation with SIV control. The results suggest that virus-specific CTLs functionally boosted by acute-phase NAbs may drive robust AIDS virus control. IMPORTANCE: In early HIV infection, NAb responses are lacking and CTL responses are insufficient, which leads to viral persistence. Hence, it is important to identify immune responses that can successfully control such HIV replication. Here, we show that monkeys receiving NAb passive immunization in early SIV infection strictly control viral replication for years. Passive infusion of NAbs with CTL cross-priming capacity resulted in induction of functionally boosted early CTL responses showing enhanced suppression of CTL escape mutant virus replication. Accordingly, the NAb-infused animals did not show accumulation of viral CTL escape mutations during sustained SIV control, and immunodominant CTL responses were preserved. This early functional augmentation of CTLs by NAbs provides key insights into the design of lasting and viral escape mutation-free protective immunity against HIV-1 infection.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Viremia/prevention & control , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Immunization, Passive , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Viremia/immunology , Viremia/virology , Virus Replication
3.
PLoS One ; 8(9): e73453, 2013.
Article in English | MEDLINE | ID: mdl-24039947

ABSTRACT

BACKGROUND: Antiviral antibodies, especially those with neutralizing activity against the incoming strain, are potentially important immunological effectors to control human immunodeficiency virus (HIV) infection. While neutralizing activity appears to be central in sterile protection against HIV infection, the entity of inhibitory mechanisms via HIV and simian immunodeficiency virus (SIV)-specific antibodies remains elusive. The recent HIV vaccine trial RV144 and studies in nonhuman primate models have indicated controversial protective efficacy of HIV/SIV-specific non-neutralizing binding antibodies (non-NAbs). While reports on HIV-specific non-NAbs have demonstrated virus inhibitory activity in vitro, whether non-NAbs could also alter the pathogenic course of established SIV replication in vivo, likewise via neutralizing antibody (NAb) administration, has been unclear. Here, we performed post-infection passive immunization of SIV-infected rhesus macaques with polyclonal SIV-specific, antibody-dependent cell-mediated viral inhibition (ADCVI)-competent non-NAbs. METHODS AND FINDINGS: Ten lots of polyclonal immunoglobulin G (IgG) were prepared from plasma of ten chronically SIVmac239-infected, NAb-negative rhesus macaques, respectively. Their binding capacity to whole SIVmac239 virions showed a propensity similar to ADCVI activity. A cocktail of three non-NAb lots showing high virion-binding capacity and ADCVI activity was administered to rhesus macaques at day 7 post-SIVmac239 challenge. This resulted in an infection course comparable with control animals, with no significant difference in set point plasma viral loads or immune parameters. CONCLUSIONS: Despite virus-specific suppressive activity of the non-NAbs having been observed in vitro, their passive immunization post-infection did not result in SIV control in vivo. Virion binding and ADCVI activity with lack of virus neutralizing activity were indicated to be insufficient for antibody-triggered non-sterile SIV control. More diverse effector functions or sophisticated localization may be required for non-NAbs to impact HIV/SIV replication in vivo.


Subject(s)
Antibodies, Viral/therapeutic use , Macaca mulatta/virology , SAIDS Vaccines/therapeutic use , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Humans , Immunization, Passive , Macaca mulatta/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology
4.
J Virol ; 86(12): 6481-90, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22491464

ABSTRACT

Nonhuman primate AIDS models are essential for the analysis of AIDS pathogenesis and the evaluation of vaccine efficacy. Multiple studies on human immunodeficiency virus and simian immunodeficiency virus (SIV) infection have indicated the association of major histocompatibility complex class I (MHC-I) genotypes with rapid or slow AIDS progression. The accumulation of macaque groups that share not only a single MHC-I allele but also an MHC-I haplotype consisting of multiple polymorphic MHC-I loci would greatly contribute to the progress of AIDS research. Here, we investigated SIVmac239 infections in four groups of Burmese rhesus macaques sharing individual MHC-I haplotypes, referred to as A, E, B, and J. Out of 20 macaques belonging to A(+) (n = 6), E(+) (n = 6), B(+) (n = 4), and J(+) (n = 4) groups, 18 showed persistent viremia. Fifteen of them developed AIDS in 0.5 to 4 years, with the remaining three at 1 or 2 years under observation. A(+) animals, including two controllers, showed slower disease progression, whereas J(+) animals exhibited rapid progression. E(+) and B(+) animals showed intermediate plasma viral loads and survival periods. Gag-specific CD8(+) T-cell responses were efficiently induced in A(+) animals, while Nef-specific CD8(+) T-cell responses were in A(+), E(+), and B(+) animals. Multiple comparisons among these groups revealed significant differences in survival periods, peripheral CD4(+) T-cell decline, and SIV-specific CD4(+) T-cell polyfunctionality in the chronic phase. This study indicates the association of MHC-I haplotypes with AIDS progression and presents an AIDS model facilitating the analysis of virus-host immune interaction.


Subject(s)
HIV Infections/genetics , HIV Infections/pathology , Histocompatibility Antigens Class I/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/physiology , Alleles , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Disease Models, Animal , Disease Progression , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Haplotypes , Histocompatibility Antigens Class I/immunology , Humans , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology
5.
FEBS Lett ; 585(14): 2377-84, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21704618

ABSTRACT

Leucine-rich repeat and fibronectin type III domain-containing (LRFN) family proteins are thought to be neuronal-specific proteins that play essential roles in neurite outgrowth and synapse formation. Here, we focused on expression and function of LRFN4, the fourth member of the LRFN family, in non-neural tissues. We found that LRFN4 was expressed in a wide variety of cancer and leukemia cell lines. We also found that expression of LRFN4 in the monocytic cell line THP-1 and in primary monocytes was upregulated following macrophage differentiation. Furthermore, we demonstrated that LRFN4 signaling regulated both the transendothelial migration of THP-1 cells and the elongation of THP-1 cells via actin cytoskeleton reorganization. Our data indicate that LRFN4 signaling plays an important role in the migration of monocytes/macrophages.


Subject(s)
Actins/metabolism , Cell Movement/physiology , Cytoskeleton/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Monocytes/metabolism , Nerve Tissue Proteins/metabolism , Proteins/metabolism , Animals , Cell Line, Tumor , Humans , Leucine-Rich Repeat Proteins , Macrophages/cytology , Membrane Glycoproteins/genetics , Monocytes/cytology , Nerve Tissue Proteins/genetics , Proteins/genetics , Signal Transduction/physiology , Tetradecanoylphorbol Acetate/metabolism , Transendothelial and Transepithelial Migration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...