Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 2938, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440772

ABSTRACT

Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

2.
Article in English | MEDLINE | ID: mdl-24730954

ABSTRACT

Refluxing of fast electrons generated by high-intensity, short-pulse lasers was investigated by measuring electron-induced Kα x rays from a buried tracer layer. Using planar foils of Au/Cu/CH, the 150-J, 0.7-ps TITAN short-pulse laser was focused on the gold foil to generate fast electrons and the 3-ns, 300-J long pulse beam irradiated on the CH side to create expanding plasma as a conducting medium. By delaying the short-pulse beam timing from the long pulse laser irradiation, the plasma size was varied to change electron refluxing in the target rear. The total yields and two-dimensional images of 8.05-keV Cu-Kα x ray were recorded with an x-ray spectrometer and two monochromatic crystal imagers. The measurements show that the integrated yields decrease by a factor of 10 from refluxing to the nonrefluxing limit. Similar radial profiles of the Kα images in the rear were observed at all delays. Hybrid-particle-in-cell simulations using plasma profiles calculated by a radiation-hydrodynamic code HYDRA agree well with the measured Kα yields. The simulations suggest that conducting plasma with the size of ∼300 µm in the laser direction and ∼600 µm in the lateral direction at the density of 2 × 1020 1/cm3 is sufficiently large to prevent electrons from refluxing in the target. The parameters found in this study can be useful in designing experiments utilizing a Kα x-ray source in refluxing regime or a tracer layer in nonrefluxing regime.

3.
Phys Rev Lett ; 110(1): 015003, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23383801

ABSTRACT

Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-µm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.


Subject(s)
Electrons , Lasers , Magnetics , Models, Theoretical , Technology, Radiologic/methods , Particle Accelerators , Spectrum Analysis/methods
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 2): 026401, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21405912

ABSTRACT

Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

5.
Rev Sci Instrum ; 81(10): 10E535, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034062

ABSTRACT

In order to obtain the angular dependent electron energy distributions, we developed a multichannel electron spectrometer (MCESM) with high energy and angular resolutions. The MCESM consists of seven small electron spectrometers set in every 5° on the basement, each of which detection range is up to 25 MeV. In the experiment, we successfully obtained electron spectra from imploded cone-shell target as well as gold plane target irradiated by ultraintense (300 J/5 ps) laser beam.

6.
Rev Sci Instrum ; 79(6): 066102, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18601438

ABSTRACT

An imaging plate has been used as a useful detector of energetic electrons in laser electron acceleration and laser fusion studies. The absolute sensitivity of an imaging plate was calibrated at 1 GeV electron energy using the injector Linac of SPring-8. The sensitivity curve obtained up to 100 MeV in a previous study was extended successfully to GeV range.

SELECTION OF CITATIONS
SEARCH DETAIL
...