Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; 200: 114316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754525

ABSTRACT

We previously reported that α-glycosylated naringin (naringin-G), synthesized by enzyme-catalyzed transglycosylation, can enhance the solubility of poorly water-soluble compounds without surface-active property. However, the solubilization mechanism has not been fully elucidated. In this study, the solubilization mechanism of naringin-G was investigated using nuclear magnetic resonance (NMR) spectroscopy, and its application in skin formulations was further investigated. 1H NMR and dynamic light scattering measurements at various concentrations confirmed the self-assembled nanostructures of naringin-G above a critical aggregation concentration of approximately 2.2 mg/mL. Two-dimensional 1H-1H nuclear Overhauser effect spectroscopy and solubility tests revealed that flavone with poor water solubility, could be solubilized in its self-assembled structure with a stoichiometric relationship with naringin-G. When naringin-G was included in the skin formulation, the permeated amount and permeability coefficient (Papp) of flavones improved up to four times with increasing amounts of naringin-G. However, flavone solubilization by adding an excessive amount of naringin-G resulted in a decreased permeated amount and Papp of flavones, indicating the interplay between the apparent solubility and skin permeability of flavones. Naringin-G, which forms a nanoaggregate structure without exhibiting surface-active properties, has the potential to enhance the solubility and skin permeation of poorly water-soluble compounds.


Subject(s)
Flavanones , Nanostructures , Skin , Solubility , Flavanones/chemistry , Glycosylation , Nanostructures/chemistry , Animals , Skin/metabolism , Skin Absorption/drug effects , Administration, Cutaneous , Flavones/chemistry , Permeability , Magnetic Resonance Spectroscopy/methods
2.
Microorganisms ; 12(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38674659

ABSTRACT

Utilities of whey powder (WP) and whey protein concentrate 34% powder (WPC34) prepared as dairy-processing residues were evaluated using a green alga Chlamydomonas reinhardtii. Analysis of C. reinhardtii growth showed that the strain used WP and WPC34 as nitrogen sources. Its specific growth rate and maximum cell density in WP-containing medium were higher than those in WPC34-containing medium; growth with WPC34 was improved by adding KCl or K2HPO4, which content was decreased as a result of WPC34's preparation from WP. Although the lipid contents in media containing dairy-processing residues were 2.72 ± 0.31 wt% and 2.62 ± 0.20 wt% with no significant difference, the composition ratio of fatty acid C14 with WPC34 was higher than that with WP and the composition ratio of the sum of fatty acid-C16 and -C18 with WPC34 tended to be lower than that with WP. Additionally, analyses of gene transcription showed that the transcription level of acetyl-CoA carboxylase biotin carboxyl carrier protein in WPC34-containing medium was lower than that in WP-containing medium, possibly affecting the ratios of the chain lengths of fatty acids. The transcription of genes involved in glycolysis and the TCA cycle was outstandingly lower in algae grown in WPC34-containing medium when compared to those cultivated in the presence of WP, resulting in differences in energy production for cell proliferation.

3.
Microorganisms ; 12(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38543503

ABSTRACT

Heterotrophic microorganism Escherichia coli LS5218 was cultured with flesh green alga Chlamydomonas reinhardtii C-9: NIES-2235 as a nutrient supplier. In order to evaluate the cell response of Escherichia coli with Chlamydomonas reinhardtii, Escherichia coli was evaluated with microbial methods and comprehensive gene transcriptional analyses. Escherichia coli with Chlamydomonas reinhardtii showed a specific growth rate (µmax) of 1.04 ± 0.27, which was similar to that for cells growing in Luria-Bertani medium (µmax = 1.20 ± 0.40 h-1). Furthermore, comparing the cellular responses of Escherichia coli in a green-algae-containing medium with those in the Luria-Bertani medium, transcriptomic analysis showed that Escherichia coli upregulated gene transcription levels related to glycolysis, 5-phospho-d-ribosyl-1-diphosphate, and lipid synthesis; on the other hand, it decreased the levels related to lipid degradation. In particular, the transcription levels were increased by 103.7 times on pgm (p * < 0.05 (p = 0.015)) in glycolysis, and decreased by 0.247 times on fadE (p * < 0.05 (p = 0.041)) in lipolysis. These genes are unique and could regulate the direction of metabolism; these responses possibly indicate carbon source assimilation as a cellular response in Escherichia coli. This paper is the first report to clarify that Escherichia coli, a substance-producing strain, directly uses Chlamydomonas reinhardtii as a nutrient supplier by evaluation of the cellular responses analyzed with microbial methods and transcriptome analysis.

4.
J Int Med Res ; 52(2): 3000605241230033, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38321885

ABSTRACT

OBJECTIVES: To apply image registration in the follow up of lung nodules and verify the feasibility of automatic tracking of lung nodules using an artificial intelligence (AI) method. METHODS: For this retrospective, observational study, patients with pulmonary nodules 5-30 mm in diameter on computed tomography (CT) and who had at least six months follow-up were identified. Two radiologists defined a 'correct' cuboid circumscribing each nodule which was used to judge the success/failure of nodule tracking. An AI algorithm was applied in which a U-net type neural network model was trained to predict the deformation vector field between two examinations. When the estimated position was within a defined cuboid, the AI algorithm was judged a success. RESULTS: In total, 49 lung nodules in 40 patients, with a total of 368 follow-up CT examinations were examined. The success rate for each time evaluation was 94% (345/368) and for 'nodule-by-nodule evaluation' was 78% (38/49). Reasons for a decrease in success rate were related to small nodules and those that decreased in size. CONCLUSION: Automatic tracking of lung nodules is highly feasible.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Artificial Intelligence , Retrospective Studies , Algorithms , Tomography, X-Ray Computed/methods
5.
Microorganisms ; 11(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38004686

ABSTRACT

Wheat bran has high nutritional values and is also cheaper than yeast nitrogen base as an important component of a medium. Although its use in microbial cultivations is expected, research and development has hardly progressed so far. In this study, with experimental Saccharomyces cerevisiae BY4741, the cell responses to wheat bran as a nutrient were evaluated by analyses of cell growth, ethanol production, and comprehensive gene transcription levels. Comparing wheat bran and yeast nitrogen base, BY4741 showed specific growth rates of 0.277 ± 0.002 and 0.407 ± 0.035 as a significant difference. Additionally, wheat bran could be used as a restricted media component like yeast nitrogen base. However, in 24 h of cultivation with wheat bran and yeast nitrogen base, although conversion ratios of ethanol productions showed no significant difference at 63.0 ± 7.2% and 62.5 ± 8.2%, the ratio of cell production displayed a significant difference at 7.31 ± 0.04% and 4.90 ± 0.16%, indicating a different cell response. In fact, the comprehensive evaluation of transcription levels strongly suggested major changes in glucose metabolism. This study indicated that BY4741 could switch transcription levels efficiently to use wheat bran.

6.
Surg Radiol Anat ; 45(10): 1287-1293, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37615700

ABSTRACT

PURPOSE: As the lenticulostriate arteries (LSAs) perfuse neurologically important areas, it is necessary to accurately assess the origin and number of the LSAs before surgery. Although three-dimensional time-of-flight MR angiography (3D-TOF MRA) is a non-invasive procedure, it requires high-resolution (HR) images to depict the LSAs with a small diameter. Therefore, we performed 3D-TOF MRA with the maximum HR (HR-MRA) using a 3 T scanner to examine whether a good depiction of the LSAs, equivalent to that of digital subtraction angiography (DSA), could be obtained. METHODS: Our study group comprised 16 consecutive patients who underwent HR-MRA and 3D-DSA. In both studies, we evaluated the localization of the origin from M1, M2, or A1 segments, their number of stems, and depiction. RESULTS: There was no significant difference in the visualization of the LSAs between HR-MRA and 3D-DSA (P values; M1, M2, and A1 = 0.39, 0.69, and 0.69, respectively), and both the number of stems and the localization of the origin of the LSAs corresponded between the two examinations. CONCLUSION: HR-MRA at 3 T can depict the LSA well. It reveals the number of the LSA stems and the LSA origin comparatively with DSA.


Subject(s)
Cerebral Arteries , Magnetic Resonance Angiography , Humans , Cerebral Arteries/diagnostic imaging , Magnetic Resonance Angiography/methods , Angiography, Digital Subtraction , Middle Cerebral Artery , Imaging, Three-Dimensional
7.
Bioengineering (Basel) ; 10(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37627778

ABSTRACT

Cell plastics which are composed of unicellular green algal cells have been proposed in previous studies. While unicellular green algae can be freely arranged using fabrication processes, a matrix is required to attach the cells together. To date, although the cell contents collected from Chlamydomonas reinhardtii show the possibility of attaching cells, but it is unclear which components can be considered attachment factors. Therefore, in this study, C. reinhardtii cells were disrupted with sonication, and the components were separated and purified with hexane. The cell plastics with only 0.5 wt% of intermediate showed similar mechanical properties to those with 17 wt% and 25 wt% of cell components that were untreated with hexane, meaning that the purified intermediates could function as matrices. The purified intermediate was composed of approximately 60 wt% of protein as the main component, and proteomic analysis was performed to survey the main proteins that remained after hexane treatment. The protein compositions of the cell content and purified intermediate were compared via proteomic analysis, revealing that the existing ratios of 532 proteins were increased in the purified intermediate rather than in the cell content. In particular, the outer structure of each of the 49 proteins-the intensity of which was increased by over 10 times-had characteristically random coil conformations, containing ratios of proline and alanine. The information could suggest a matrix of cell plastics, inspiring the possibility to endow the cell plastics with more properties and functions.

8.
Polymers (Basel) ; 15(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37447612

ABSTRACT

In the current system, the disposal of plastic materials causes serious environmental pollution such as the generation of carbon dioxide and destruction of the ecosystem by micro-plastics. To solve this problem, bioplastics, biomass and biodegradable plastics have been developed. As part of our research, we have developed novel bioplastics called "cell-plastics", in which a unicellular green algal cell serves as a fundamental resource. The production of the cell-plastics would be expected to reduce environmental impact due to the usage of a natural product. Herein, to overcome the mechanical strength of cell-plastics, we used thermosetting epoxy and urethane resins containing Chlorella sp. as the green algae. We successfully fabricated thermosetting resins with a Chlorella sp. content of approximately 70 wt% or more. IR measurements revealed that the chemical structure of an epoxide or isocyanate monomer mixed with Chlorella sp. was modified, which suggests that the resins were hardened by the chemical reaction. In addition, we investigated the effect of thermosetting conditions such as temperature and compression for curing both resins. It was revealed that the Young's moduli and tensile strengths were controlled by thermosetting temperature and compression, whereas the elongation ratios of the resins were constant at low values regardless of the conditions.

9.
Microorganisms ; 11(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36985207

ABSTRACT

Green algae produce valuable lipids as carbon-recycling resources. Collecting whole cells with the intracellular lipids could be efficient without cell burst; however, direct use of the cells causes microbial contamination in environments. Then, UV-C irradiation was selected to satisfy the requirements of avoiding the cell burst and sterilizing cells with Chlamydomonas reinhardtii. UV-C irradiation with 1.209 mW·cm-2 showed enough sterilization activity for 1.6 × 107 cells·mL-1 of C. reinhardtii in a depth of 5 mm for 10 min. The irradiation showed no effects to composition and contents of the intracellular lipids. From the viewpoint of transcriptomic analysis, the irradiation displayed possibilities of (i) inhibition of the synthesis of lipids due to decrement of the transcription of related genes, such as diacylglycerol acyl transferase and cyclopropane fatty acid synthase, and (ii) activation of lipid degradation and the production of NADH2+ and FADH2 due to increment of the transcription of related genes, such as isocitrate dehydrogenase, dihydrolipoamide dehydrogenase and malate dehydrogenase. Irradiation until cell death could be insufficient to shift the metabolic flows even though the transcriptions were already shifted to lipid degradation and energy production. This paper is the first report of the response of C. reinhardtii to UV-C irradiation on the transcription level.

10.
Magn Reson Med Sci ; 22(2): 232-240, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-35545549

ABSTRACT

PURPOSE: To assess the effect of an ultrahigh b value of 3000 s/mm2 and the minimal TE of 53 ms on image quality and T2 shine-through effect in liver diffusion-weighted imaging (DWI) using a 3-Tesla MRI scanner with a peak gradient of 100 mT/m. METHODS: At b values of 1000 and 3000 s/mm2 and at the minimal (44-53 ms) and routine TEs (70 ms), DWI of our original phantom and liver DWI in 10 healthy volunteers and 26 patients with 35 hepatic hemangiomas were acquired with this scanner, and the quantified SNR of the phantom and the hepatic parenchyma in the volunteers and the contrast-to-noise ratio (CNR) of the hepatic hemangiomas were calculated; two independent readers qualitatively graded the overall image quality in the volunteers and determined the presence or absence of the T2 shine-through effect related to the hemangiomas in the patients. We compared the SNR and subjective overall image quality between the minimal and routine TEs and the CNR and incidence of the T2 shine-through effect between b values of 1000 and 3000 s/mm2. Inter-reader agreement was also evaluated. RESULTS: The SNR at both b values was significantly higher, and the subjective overall image quality at a b value of 3000 s/mm2 was significantly better at the minimal TE than at the routine TE (P < 0.05 for all). The CNR at both TEs and the incidence of the T2 shine-through effect at the minimal TE were significantly lower at a b value of 3000 s/mm2 than at a b value of 1000 s/mm2 (P < 0.05 for all). Inter-reader agreement was excellent. CONCLUSION: Liver DWI at the ultrahigh b value can reduce the T2 shine-through effect with improvement of image quality using the minimal TE.


Subject(s)
Hemangioma , Liver Neoplasms , Humans , Pilot Projects , Diffusion Magnetic Resonance Imaging/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Hemangioma/diagnostic imaging , Reproducibility of Results
11.
BMC Med Imaging ; 22(1): 203, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36419044

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths throughout the world. Chest computed tomography (CT) is now widely used in the screening and diagnosis of lung cancer due to its effectiveness. Radiologists must identify each small nodule shadow from 3D volume images, which is very burdensome and often results in missed nodules. To address these challenges, we developed a computer-aided detection (CAD) system that automatically detects lung nodules in CT images. METHODS: A total of 1997 chest CT scans were collected for algorithm development. The algorithm was designed using deep learning technology. In addition to evaluating detection performance on various public datasets, its robustness to changes in radiation dose was assessed by a phantom study. To investigate the clinical usefulness of the CAD system, a reader study was conducted with 10 doctors, including inexperienced and expert readers. This study investigated whether the use of the CAD as a second reader could prevent nodular lesions in lungs that require follow-up examinations from being overlooked. Analysis was performed using the Jackknife Free-Response Receiver-Operating Characteristic (JAFROC). RESULTS: The CAD system achieved sensitivity of 0.98/0.96 at 3.1/7.25 false positives per case on two public datasets. Sensitivity did not change within the range of practical doses for a study using a phantom. A second reader study showed that the use of this system significantly improved the detection ability of nodules that could be picked up clinically (p = 0.026). CONCLUSIONS: We developed a deep learning-based CAD system that is robust to imaging conditions. Using this system as a second reader increased detection performance.


Subject(s)
Deep Learning , Lung Neoplasms , Humans , Tomography, X-Ray Computed , Lung Neoplasms/diagnostic imaging , Phantoms, Imaging , Lung/diagnostic imaging
12.
BioTech (Basel) ; 11(4)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36278558

ABSTRACT

Microflora is actively used to produce value-added materials in industry, and each cell density should be controlled for stable microflora use. In this study, a simple system evaluating the cell density was constructed with artificial intelligence (AI) using the absorbance spectra data of microflora. To set up the system, the prediction system for cell density based on machine learning was constructed using the spectra data as the feature from the mixture of Saccharomyces cerevisiae and Chlamydomonas reinhardtii. As the results of predicting cell density by extremely randomized trees, when the cell densities of S. cerevisiae and C. reinhardtii were shifted and fixed, the coefficient of determination (R2) was 0.8495; on the other hand, when the cell densities of S. cerevisiae and C. reinhardtii were fixed and shifted, the R2 was 0.9232. To explain the prediction system, the randomized trees regressor of the decision tree-based ensemble learning method as the machine learning algorithm and Shapley additive explanations (SHAPs) as the explainable AI (XAI) to interpret the features contributing to the prediction results were used. As a result of the SHAP analyses, not only the optical density, but also the absorbance of the Soret and Q bands derived from the chloroplasts of C. reinhardtii could contribute to the prediction as the features. The simple cell density evaluating system could have an industrial impact.

13.
Appl Microbiol Biotechnol ; 106(12): 4459-4468, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35676378

ABSTRACT

Cell plastics in this study were fabricated with only unicellular green alga Chlamydomonas reinhardtii as raw materials. The sizes of cell-major axis as structures were 8.4 ± 1.2 µm, and the aspect ratios of those were 1.2 ± 0.1, showing homogeneous particle size. After optimizing extraction condition of intracellular contents, cell plastics were fabricated with the cells as ingredient components and the intracellular contents as matrix components. Those cell plastics were observed with scanning electron microscopy, displaying the smooth surfaces of the cell plastics at a low magnification level. However, the surface, especially exposed surface, were rough at high magnification level. Tensile strength test revealed that increasing the ratio of intracellular contents in the cell plastics until 21% led enhancing mechanical properties of Young's modulus and tensile strength; however, 25% of intracellular contents displayed decreases of those properties. As the optimal point, the cell plastic (21%), which contained 21% (w/w) of intracellular contents in cell plastics, showed 764 ± 100 MPa and 8.6 ± 5.2 MPa of Young's modulus and tensile strength. The cell plastics showed few plastic region and soon fractured, indicating the possibility that cells and intracellular contents could be electrostatically connected. Additionally, cells were shown as a negative charge and displayed the possibility to contribute electrically cell-gathering with intracellular ionic components. Therefore, cells and intracellular contents containing ionic metabolites could be electrostatically connected for giving the mechanical strength to cell plastics. In this study, we successfully demonstrated fabricating cell plastics with only cells for the first time and also showed the high possibility of conjugating each cell with the intracellular contents. KEY POINTS: • Cell plastics are fabricated with unicellular green algal cell directly. • Unicellular cells required to be conjugated for the fabrication with matrix. • Cells were conjugated with intracellular contents for cell-plastic fabrication.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolism , Microscopy, Electron, Scanning , Particle Size , Plastics/metabolism , Tensile Strength
14.
Microorganisms ; 10(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744691

ABSTRACT

Saccharomyces cerevisiae has the potential to produce value-added chemicals; however, this strain is restricted by using glycerol as a carbon source. Although acclimatization of S. cerevisiae as a glycerol-assimilating strain was confirmed so far, the reason why S. cerevisiae can be acclimatized was not clear in detail with limited information on the metabolic changes. In this report, glycerol-assimilating strains from S. cerevisiae BY4741 were isolated, and the biomass production, ethanol fermentation, and transcription levels related to glycolysis and the tricarboxylic acid cycle under aerobic and slightly anaerobic conditions were analyzed. As the results show, although µmax was equal to 0.15 h-1 between wildtype and glycerol-assimilating strains in an aerobic culture including glucose, the differences in max biomass production and percentage yields of ethanol and transcription levels between the two strains were shown. In slightly anaerobic culture, the differences in transcription levels downstream of glycolysis were also displayed. In the case of the glycerol-assimilating strain with glycerol under aerobic conditions, although the transcription levels related to ethanol production were sufficient, the ethanol production was not detected. Additionally, the biomass production reached a plateau even in the culture containing sufficient glycerol, indicating that the redox imbalance even in the cells of the glycerol-acclimatized strain could disturb the utilization of glycerol. The obtained knowledge will promote the use of glycerol resources with the glycerol-acclimatized S. cerevisiae in view of carbon recycling.

15.
BioTech (Basel) ; 12(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36648828

ABSTRACT

This study reports a new carbon material and its specific display of targeted protein. The properties of the carbon materials fabricated with carbon black MOGUL® were analyzed. The carbon materials were spherical structures with 55.421 µm as a median value. The specific surface area, pore volume, average pore diameter, and total of the acidic functional group were 130 m2·g-1, 0.55 cm3·g-1, 17.2 nm, and 0.29 mEq·g-1, respectively. The adsorption-desorption isoform of the carbon materials showed type IV of the hysteresis loop as defined by IUPAC, indicating non-uniform mesoporous structures (2-50 nm). The distribution of the log differential pore volume also indicated non-uniform porous structures because (i) the difference between the average pore size and the most frequent pore size was significant and (ii) the σ value was larger than the average value regarding the pore sizes. However, 10-90% of the integrated values of the log differential pore volume were 57.4% of the total integrated values, and the distribution was similar to the Gauss distribution model. Although the value of the total of the acidic functional group was 2.5-5.4 times lower than the values of the HPLC columns, the carbon materials require good scaffold quality rather than good HPLC quality. Therefore, the amounts could be enough for the scaffold of biotin hydrazide. To demonstrate the property of displaying the targeted proteins, carbon materials displaying biotin hydrazide by covalent bonding were prepared and avidin-labeled horse radish peroxidase (HRP) was bound to the biotin region. The carbon materials were porous structures, so the unspecific adsorption of HRP was estimated. Then, the maintenance ratios of HRP activities were analyzed in the repeated-use-with-wash processes after each evaluation, resulting in the activities of HRP on the carbon materials being treated with biotin hydrazide being significantly maintained compared to that of the ones without biotin hydrazide. The study revealed the properties of the carbon materials and indicated the display of HRP, suggesting that the carbon materials could be a new material for displaying targeted proteins.

16.
Gan To Kagaku Ryoho ; 49(13): 1488-1490, 2022 Dec.
Article in Japanese | MEDLINE | ID: mdl-36733111

ABSTRACT

Colorectal stents are used mainly for the palliative treatment of colorectal obstruction or preoperative re-obstruction. However, the hemostatic effect of covered stents reportedly induced bleeding of esophageal cancer and varicosities. Here, we report a case of mildly obstructed rectal cancer with severe anemia and hemorrhagic shock that resulted in pulsatile tumor bleeding. Curative surgical resection was performed successfully after the administration of chemoradiotherapy. The patient was a 67-year-old man. A nearby doctor diagnosed him with anemia(Hb 4.6 g/dL)and referred him to our hospital, where he was diagnosed with rectal cancer at the Ra position. He was immediately hospitalized owing to voluminous melena, loss of consciousness, and hematoma formation on the posterior aspect of the head. Urgent CF was performed due to persistent melena and decreased blood pressure. The pulsatile bleeding from rectal cancer was identified. To address the diffuse bleeding, a covered stent was placed to induce hemostasis and dilation. This also served as a bridge to surgery( BTS). Hemostasis was successfully achieved. After chemoradiotherapy( CRT), a laparoscopic low anterior resection was performed. Radical surgery was performed, and S-1 was taken 6 months postoperatively. At 2 years postoperatively, metastatic recurrence was not observed.


Subject(s)
Anemia , Rectal Neoplasms , Shock, Hemorrhagic , Humans , Male , Aged , Melena , Rectal Neoplasms/complications , Rectal Neoplasms/surgery , Chemoradiotherapy , Hemorrhage , Stents
17.
Glob Chall ; 5(8): 2100026, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34377533

ABSTRACT

The current system of disposal of plastic materials fabricated from petroleum-based resources causes serious environmental pollution. To solve the problem, a bioplastic called "cell-plastic" is developed, in which unicellular green algal cells serve as a fundamental resource. This approach converts CO2 in the atmosphere directly into plastic products by exploiting the photosynthetic-driven proliferation of algal cells. Herein, cell-plastic films are fabricated using biodegradable and water-soluble polyvinyl alcohol (PVA) as a matrix, in which the effects of a cell-to-matrix mixing ratio and the chemical structure of the matrix on the mechanical and thermal properties are investigated. As a method of the chemical structural change, a cross-linking structure is introduced to the matrix by connecting hydroxy groups of PVA using aldehyde. The tensile tests reveal that the PVA-cell-plastic film maintains the mechanical properties of PVA film. Moreover, a cross-linked cell-plastic film exhibits high water absorption, making it suitable as a functional cell-plastic material.

18.
Gan To Kagaku Ryoho ; 48(13): 1758-1760, 2021 Dec.
Article in Japanese | MEDLINE | ID: mdl-35046321

ABSTRACT

BACKGROUND: In recent years, there has been an increasing incidence of Pneumocystis jirovecci pneumonia(PCP)in immunosuppressed non-HIV patients. However, only a few studies on PCP developed during chemotherapy for gastrointestinal cancer have been reported. Case 1: A 72-year-old man was complaining of dyspnea during chemotherapy for unresectable gastric cancer. The patient showed high ß-D-glucan levels, and his sputum tested positive for sputum Pneumocystis PCR. Even after TMP-SMX administration, the patient's respiratory condition worsened; hence, intubation was needed. Finally, he died without showing any improvement. Case 2: A 75-year-old man underwent chemotherapy for a recurrence of cecal cancer and received steroid pulse for adverse events of optic neuritis. However, his respiratory condition worsened. Furthermore, his sputum tested positive for Pneumocystis PCR. Intensive care including TMP-SMX administration followed to improve his condition. DISCUSSION: PCP with non-HIV has a more acute onset and a poorer prognosis than that with HIV. It is necessary to identify PCP when there is a rapid progression of respiratory symptoms and pneumonia in cancer patients undergoing chemotherapy or steroid treatment.


Subject(s)
Gastrointestinal Neoplasms , Pneumocystis carinii , Pneumonia, Pneumocystis , Aged , Humans , Male , Pneumonia, Pneumocystis/drug therapy , Retrospective Studies , Trimethoprim, Sulfamethoxazole Drug Combination
19.
AMB Express ; 10(1): 112, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32524300

ABSTRACT

Green alga Chlamydomonas reinhardtii has gained interest as a sustainable resource because it can be easily grown using CO2 as a carbon source owing to its high CO2 assimilating activity. Although the robustness of the cell wall of C. reinhardtii makes it difficult to extract its intracellular products, such property is beneficial when using the cell as an ingredient to fabricate "cell-plastic" in this study. The cell layer, which is a component of the cell-plastic, was prepared with an intercellular filler to connect each cell because C. reinhardtii is a single-cell strain. The cell layers were then repeatedly piled to increase the strength of the cell-plastic. To avoid slippage between the cell layers, they were covered with a small amount of a two-dimensional polymer to maintain the flat surface structure of the cell-plastic. Based on the evaluation, the cell-plastic has the potential to be a novel, sustainable plastic using ubiquitous green algal cells in nature.

20.
Gan To Kagaku Ryoho ; 47(13): 1887-1889, 2020 Dec.
Article in Japanese | MEDLINE | ID: mdl-33468862

ABSTRACT

BACKGROUND: Cell-free and concentrated ascites reinfusion therapy(CART)is useful for relief of the symptoms caused by malignant ascites. We experienced 2 cases of untreated gastric cancer with massive ascites due to peritoneal dissemination, to whom chemotherapy was successfully introduced as a result of improvement of general conditions achieved by CART. Case 1: A 56-year-old woman with massive ascites was introduced for the treatment of gastric cancer. After a CART, oral ingestion became possible and S-1 plus oxaliplatin(SOX)therapy was introduced. Three courses of SOX therapy were possible until just before her death with 6 times of maintenance CART in total. Case 2: An 80-year-old man was introduced for the same reason. After a CART, he was treated with 4 courses of trastuzumab plus capecitabine plus oxaliplatin(Tra plus CapeOX)therapy with 5 times of maintenance CART in total. DISCUSSION: CART is useful for alleviating symptoms caused by malignant ascites and makes systemic chemotherapy possible because it improves and maintains the general conditions.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ascites/drug therapy , Ascites/etiology , Capecitabine/therapeutic use , Female , Humans , Male , Middle Aged , Oxaliplatin/therapeutic use , Peritoneal Neoplasms/drug therapy , Stomach Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...