Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1378039, 2024.
Article in English | MEDLINE | ID: mdl-38840668

ABSTRACT

Various implant surface treatment methods have been developed to achieve good osseointegration in implant treatment. However, some cases remain impossible to treat with implants because osseointegration is not obtained after implantation, and the implants fail. Thus, this study focused on phosphorylated pullulan because of its adhesiveness to titanium (Ti) and bone, high biocompatibility, and early replacement with bone. In this study, the response of bone-related cells to phosphorylated pullulan was evaluated to develop a new surface treatment method. Saos-2 (human osteosarcoma-derived osteoblast-like cells), MC3T3-E1 (mouse calvaria-derived osteoblast-like cells), and RAW264.7 (mouse macrophage-like cells) were used. In evaluating cellular responses, phosphorylated pullulan was added to the culture medium, and cell proliferation and calcification induction tests were performed. The proliferation and calcification of cells on the surface of Ti disks coated with phosphorylated pullulan were also evaluated. In addition, bone morphogenetic protein-2 (BMP-2), an osteogenic factor, was used to evaluate the role of phosphorylated pullulan as a drug carrier in inducing calcification on Ti disks. Phosphorylated pullulan tended to promote the proliferation of osteoblast-like cells and the formation of calcification on Ti disks coated with phosphorylated pullulan. Ti disks coated with phosphorylated pullulan loaded with BMP-2 enhanced calcification. Phosphorylated pullulan inhibited osteoclast-like cell formation. These results are due to the properties of phosphorylated pullulan, such as adhesiveness to titanium and drug-loading function. Therefore, phosphorylated pullulan effectively promotes bone regeneration when coated on titanium implants and is useful for developing a new surface treatment method.

2.
Front Bioeng Biotechnol ; 11: 1243951, 2023.
Article in English | MEDLINE | ID: mdl-37885453

ABSTRACT

The current study aimed to evaluate bone tissue regeneration using a combination of ß-tricalcium phosphate (ßTCP) and phosphorylated pullulan (PPL, a phosphate-rich polysaccharide polymer consisting of maltotriose units). Round defects of 2 mm diameter were created in the arterial center of rat tibiae, which were further treated with vehicle (control group), ßTCP (ßTCP group), or ßTCP + PPL (ßTCP + PPL group) grafts. The control specimens without bone grafts exhibited rapid bone formation after 1 week; however, the regenerated bone was not resorbed until 4 weeks. In contrast, ßTCP-grafted specimens exhibited fewer but thicker trabeculae, whereas the ßTCP + PPL group displayed many fine trabeculae at 4 weeks. In the ßTCP + PPL group, new bone was associated with the ßTCP granules and PPL. Similarly, PHOSPHO1-positive osteoblasts were localized on the ßTCP granules as well as the PPL. On the other hand, TRAP-reactive osteoclasts predominantly localized on newly-formed bone and ßTCP granules rather than on the PPL. No significant differences were observed in the expression of Alp, Integrin αv, Osteopontin, Osteocalcin, and Dmp-1 in PPL-treated MC3T3-E1 osteoblastic cells, suggesting that PPL did not facilitate osteoblastic differentiation. However, von Kossa staining identified abundant needle-like calcified structures extending inside the PPL. Furthermore, transmission electron microscopy (TEM) revealed many globular structures identical to calcified nodules. In addition, calcified collagen fibrils were observed in the superficial layer of the PPL. Thus, PPL may serve as a scaffold for osteoblastic bone formation and promotes calcification on its surface. In conclusion, we speculated that ßTCP and PPL might promote bone regeneration and could be integrated into promising osteoconductive materials.

3.
Dent Mater J ; 42(3): 433-440, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37032102

ABSTRACT

Recombinant human bone morphogenetic protein-2 (rhBMP-2) is one of the growth factors that may induce the formation of new bone. The aim was to determine the efficacy of low doses of rhBMP-2 for bone regeneration using a collagen sponge as a carrier. Three doses of rhBMP-2 (1.167, 0.117, and 0.039 mg/mL) were combined with an absorbable collagen sponge (ACS) as a delivery vehicle. The rhBMP-2/ACS implants were placed in the subcutaneous tissues of rat backs. X-ray microcomputed tomography (micro-CT) and histological analysis were used to evaluate bone formation. The samples treated with 1.167 mg/mL of rhBMP-2 showed greater bone formation than the samples treated with 0.117 mg/mL of rhBMP-2 four weeks after surgery. However, there was no evidence of bone formation in the samples that were treated with 0.039 mg/mL of rhBMP-2. It was found that rhBMP-2 was osteogenic even at one-tenth of its manufacturer's recommended concentration (1.167 mg/mL), indicating its potential for clinical use at lower concentrations.


Subject(s)
Bone Morphogenetic Protein 2 , Transforming Growth Factor beta , Humans , Rats , Animals , X-Ray Microtomography , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use , Bone Morphogenetic Protein 2/pharmacology , Collagen/pharmacology , Recombinant Proteins/pharmacology , Bone Regeneration , Absorbable Implants
4.
Pharmaceutics ; 15(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36839866

ABSTRACT

Although autopolymerizing resin offers numerous applications in orthodontic treatment, plaque tends to accumulate between the appliance and the mucosa, which increases the number of microorganisms present. In this study, we added cetylpyridinium chloride (CPC) loaded montmorillonite (Mont) and nanoporous silica (NPS) to autopolymerizing resin (resin-Mont, resin-NPS) and evaluated their drug release capacity, antimicrobial capacity, drug reuptake capacity, mechanical strength, and color tone for the devolvement of autopolymerizing resin with antimicrobial properties. As observed, resin-Mont and resin-NPS were capable of the sustained release of CPC for 14 d, and a higher amount of CPC was released compared to that of resin-CPC. Additionally, resin-Mont and resin-NPS could reuptake CPC. Moreover, the antimicrobial studies demonstrated that resin-Mont and resin-NPS could release effective amounts of CPC against Streptococcus mutans for 14 d and 7 d after reuptake, respectively. Compared to resin-CPC, resin-Mont exhibited a higher sustained release of CPC in all periods, both in the initial sustained release and after reuptake. However, the mechanical strength decreased with the addition of Mont and NPS, with a 36% reduction observed in flexural strength for resin-Mont and 25% for resin-NPS. The application of these results to the resin portion of the orthodontic appliances can prevent bacterial growth on the surface, as well as on the interior, of the appliances and mitigate the inflammation of the mucosa.

5.
J Oral Biosci ; 64(4): 410-421, 2022 12.
Article in English | MEDLINE | ID: mdl-36241157

ABSTRACT

OBJECTIVES: Interleukin-6 (IL-6) contributes to the regulation of functions in various tissues and organs. Even though IL-6 has been reported to modulate bone metabolism in previous studies, this finding is controversial. This study aims to evaluate the possible involvement of IL-6 in bone metabolism by examining the histological activity of osteoblasts and osteoclasts in the femora of Il-6 deficient (Il-6-/-) mice. METHODS: Eight-week-old male Il-6-/- mice and their wild-type littermates were fixed with a paraformaldehyde solution, and their femora were extracted for micro-CT analysis, immunohistochemistry, and real-time PCR analysis. RESULTS: Il-6-/- femora showed an increased bone volume/tissue volume (TV) but a reduced bone mineral density compared with the wild-type. Furthermore, the tissue-nonspecific alkaline phosphatase positive area/TV ratio, the expression of Runx2, Osterix, and Rankl, and the number of tartrate-resistant acid phosphatase-positive osteoclasts were all increased in the Il-6-/- mice. A considerable number of unmineralized areas within the bone matrix and abundant sclerostin-reactive osteocytes were observed in Il-6-/- femoral metaphyses but not in the wild-type. Interestingly, the gene expression of Cd206 was elevated in Il-6-/- femora, and many F4/80-positive macrophages/monocytes and CD206-immunoreactive macrophages in the primary trabeculae had migrated closer to the growth plate, where intense RANKL immunoreactivity was detected. These results suggest that, in an IL-6-deficient state, CD206-positive macrophages may differentiate into osteoclasts when in contact with RANKL-reactive osteoblastic cells. CONCLUSION: In a state of IL-6 deficiency, the population and cell activities of osteoblast, osteoclasts, and macrophages seemed to be facilitated, except for the reduced mineralization in bone.


Subject(s)
Bone Remodeling , Interleukin-6 , Mice , Male , Animals , Interleukin-6/genetics , Bone Remodeling/genetics , Osteoclasts/metabolism , Osteoblasts/metabolism , Bone and Bones/diagnostic imaging
6.
J Oral Biosci ; 64(3): 337-345, 2022 09.
Article in English | MEDLINE | ID: mdl-35589073

ABSTRACT

OBJECTIVES: Recently, the biological functions of endomucin-positive blood vessels and closely associated αSMA-positive cells in long bones have been highlighted. The surrounding tissues of the flat bones, such as nasal bones covered with mucosa and lamina propria, are different from those of the long bones, indicating the different distributions of endomucin-positive blood vessels and αSMA-reactive cells in nasal bones. This study demonstrates the immunolocalization of endomucin-reactive blood vessels and αSMA-positive cells in the nasal conchae of 3- and 7-week-old mice. METHODS: The nasal conchae of 3-week-old and 7-week-old male C57BL/6J mice were used for immunoreaction of endomucin, CD34, PDGFbb, TRAP, and c-kit. RESULTS: While we identified abundant endomucin-reactive blood vessels in the lamina propria neighboring the bone, not all were positive for endomucin. More CD34-reactive cells and small blood vessels were observed in the nasal conchae of 3-week-old mice than in those of 7-week-old mice. Some αSMA-positive cells in the nasal conchae surrounded the blood vessels, indicating vascular smooth muscle cells, while other αSMA-immunopositive fibroblastic cells were detected throughout the lamina propria. αSMA-positive cells did not co-localize with c-kit-immunoreactivity, thereby indicating that the αSMA-positive cells may be myofibroblasts rather than undifferentiated mesenchymal cells. CONCLUSIONS: Unlike long bones, nasal conchae contain endomucin-positive as well as endomucin-negative blood vessels and exhibit numerous αSMA-positive fibroblastic cells throughout the lamina propria neighboring the bone. Apparently, the distribution patterns of endomucin-positive blood vessels and αSMA-positive cells in nasal conchae are different from those in long bones.


Subject(s)
Actins , Mucous Membrane , Animals , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth , Proto-Oncogene Proteins c-kit , Sialomucins
7.
J Oral Biosci ; 64(2): 237-244, 2022 06.
Article in English | MEDLINE | ID: mdl-35398598

ABSTRACT

OBJECTIVES: Osteoclasts can sense the surface topography of materials. However, it is difficult to identify the structural factors that affect osteoclast formation and its function. Furthermore, we hypothesized that the type of osteoclast precursor cells also affects osteoclastogenesis in the materials. In this study, we investigated the effects of defined micro/nanoscale patterns on osteoclastogenesis from bone marrow cells (BMCs). METHODS: Various cyclo-olefin polymer (COP) patterns were prepared using nanoimprinting. The effects of shape, size, and height of the patterns, and the wettability of the patterned surfaces on osteoclastogenesis from BMCs were evaluated in vitro. RESULTS: Osteoclast formation was promoted on pillars (diameter, 1 µm or 500 nm; height, 500 nm). Notably, osteoclastogenesis from BMCs was better promoted on hydrophobic pillars than on hydrophilic pillars. In contrast, decreased osteoclast formation was observed on the nanopillars (diameter, 100 nm; height, 200 nm). CONCLUSIONS: We demonstrated the promotion of osteoclast formation from BMCs on hydrophobic pillars with diameters of 1 µm and 500 nm. Some cellular behaviors in the patterns were dependent on the type of osteoclast precursor cells. The designed patterns are useful for designing the surface of dental implants or bone replacement materials with a controllable balance between osteoblast and osteoclast activities.


Subject(s)
Osteoclasts , RANK Ligand , Animals , Bone Marrow Cells , Mice , Osteoblasts , Osteogenesis , RANK Ligand/pharmacology
8.
Materials (Basel) ; 14(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34640141

ABSTRACT

This study prepared glass ionomer cement (GIC) containing nanoporous silica (NPS) (GIC-NPS) at 5 wt% concentrations using 3 types of NPS with different pore and particle sizes and evaluated the differences in their cationic ion capture/release abilities and mechanical properties. The cationic water-soluble dye was used as cationic ion. The test GIC-NPS complexes captured dyes by immersion in 1 wt% dye solutions. All the GIC-NPS complexes released dyes for 28 d, and the amount of dye released from the complexes increased with decreasing pore size; however, the particle size of NPS did not affect the amount of dye released. Additionally, GIC-NPS was able to recharge the dye, and the amount of released the dye by the complexes after recharge was almost identical to the amount released on the first charge. Although not significantly different, the compressive strength of GIC-NPS was slightly greater than that of GIC without NPS regardless of the type of NPS. These results suggest that the degree of capture and release of cationic molecules, such as drugs, can be controlled by optimizing the pore size of NPS without sacrificing its mechanical strength when its content is 5 wt%.

9.
Biomed Res ; 42(4): 139-151, 2021.
Article in English | MEDLINE | ID: mdl-34380922

ABSTRACT

It remains unknown whether the histology of vascular invasion during secondary ossification of epiphyseal cartilage is the same as that seen in primary ossification; we examined the initial processes of vascular invasion of secondary ossification in the murine femora. Many endomucin-immunoreactive blood vessels gathered at the central region of the articular surface, and buds of soft tissue, including glomerular loops of endomucin-immunoreactive blood vessels and TNALPase- immunopositive osteoblastic cells accompanied by TRAP-positive osteoclasts, had begun to invade the epiphyseal cartilage. The invading soft tissues formed cartilage canals displaying MMP9 immunoreactivity in the tip region, and cartilaginous collagen fibrils were not visible in the vicinity of the vascular wall of the blood vessels. Thus, the histological profile marked by invading glomerular vasculature and the erosion of the cartilage matrix near the vascular walls during secondary ossification differs from that seen during primary ossification.


Subject(s)
Growth Plate , Osteogenesis , Animals , Cartilage , Femur , Mice , Osteoclasts
10.
J Nanosci Nanotechnol ; 20(5): 2668-2674, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31635601

ABSTRACT

In this study, we investigated water-dispersible surface modification for size- and shape-controlled fullerene nanoparticles (C60P) based on a condensation reaction with di-amino alkane. This modification provided for water dispersibility of C60P and the capability for secondary modification as well. The resultant C60P particles have several useful physical properties: water-dispersibility for ease of injection; fluorescence for detection and quantification; and a characteristic morphology to assist identification. These properties will widely extend the applications of these particles, especially into the biological fields of bioimaging and drug delivery.


Subject(s)
Fullerenes , Nanoparticles , Water
11.
J Nanosci Nanotechnol ; 18(1): 75-79, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29768814

ABSTRACT

We investigated in controlled dye-release behavior of nanosized silica particles containing nanocavities (Nanoporous silica, NPS). To determine this, NPS were mixed with glass ionomer cement (GIC), which is a medical material used as a matrix. The dye-release behavior was observed using a UV-visible spectrometer. After cationic dye was charged into GIC pellet containing NPS, the pellet could gradually release cationic dye for up to two weeks. To understand the dependence of electric charge on the dye-release behavior, three types of dyes with different charge were also investigated. Dyes having a neutral or negative electric charge were quickly released from the pellet within a couple of days. These results suggest that the nanocavities present in NPS can selectively bind cationic dyes and allow for their gradual release. This result reveals the excellent sustained dye-release property of NPS.

12.
J Dent Child (Chic) ; 79(2): 111-4, 2012.
Article in English | MEDLINE | ID: mdl-22828769

ABSTRACT

A case of leiomyomatous hamartoma in the postmedian region of the dorsum of the tongue in a 3-year-old boy is reported. This lesion had been noticed at about 1 year of age but was left untreated. The intensity of the inner region of the mass was homogenous and similar to that of the surrounding tongue muscle on both T1- and T2-weighted images of an MRI. The mass was diagnosed as benign tumor of the tongue and resected. Histopathologically, nodular overgrowth of spindle cells containing eosinophilic cytoplasm was noted in the submucoepithelial connective tissue. In immunohistochemical staining, spindle cells were negative for S-100 protein and positive for vimentin and -SMA, suggesting that these cells were derived from smooth muscle. In the 10 months after surgery, there has been no recurrence of the lesion. To our knowledge, only 26 cases (including the present case) have been diagnosed histopathologically as leiomyomatous hamartoma in the oral cavity between 1945 and 2009. Clinical features, differential diagnosis, and treatment are discussed herein.


Subject(s)
Hamartoma/diagnosis , Leiomyoma/diagnosis , Tongue Neoplasms/diagnosis , Child, Preschool , Diagnosis, Differential , Hamartoma/pathology , Hamartoma/surgery , Humans , Leiomyoma/pathology , Leiomyoma/surgery , Magnetic Resonance Imaging , Male , Tongue Neoplasms/pathology , Tongue Neoplasms/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...