Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(47): 30696-30703, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36337942

ABSTRACT

NASICON-type LiZr2(PO4)3 (LZP) has attracted significant attention as a solid oxide electrolyte for all-solid-state Li-ion or Li-metal batteries owing to its high Li-ion conductivity, usability in all-solid-state batteries, and electrochemical stability against Li metal. In this study, we aim to improve the Li-ion conductivity of Li-rich NASICON-type LZPs doped with CaO and SiO2, i.e., Li1+x+2y Ca y Zr2-y Si x P3-x O12(0 ≤ x ≤ 0.3, 0 ≤ y ≤ 0.3) (LCZSP). Herein, a total of 49 compositions were synthesised, and their crystal structures, relative densities, and Li-ion conductivities were characterised experimentally. We confirmed the improvement in Li-ion conductivity by simultaneous replacement of Zr and P sites with Ca and Si ions, respectively. However, the intuition-derived determination of the composition exhibiting the highest Li-ion conductivity is technically difficult because the compositional dependence of the relative density and the crystalline phase of the sample is very complex. Bayesian optimisation (BO) was performed to efficiently discover the optimal composition that exhibited the highest Li-ion conductivity among the samples evaluated experimentally. We also optimised the composition of the LCZSP using multi-task Gaussian process regression after transferring prior knowledge of 47 compositions of Li1+x+2y Y x Ca y Zr2-x-y P3O12 (0 ≤ x ≤ 0.376, 0 ≤ y ≤ 0.376) (LYCZP), i.e., BO with transfer learning. The present study successfully demonstrated that BO with transfer learning can search for optimal compositions two times as rapid as the conventional BO approach. This approach can be widely applicable for the optimisation of various functional materials as well as ionic conductors.

2.
Chem Commun (Camb) ; 58(67): 9328-9340, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35950409

ABSTRACT

All-solid-state Li-ion batteries are of considerable interest as safer alternatives to Li-ion batteries containing flammable organic electrolytes. To date, however, achieving sufficient charging and discharging rates, in addition to capacity, at room temperature using these all-solid-state batteries has been challenging. To overcome these issues, material simulations and informatics investigations of a relatively new Na superionic conductor (NASICON)-type LiZr2(PO4)3 (LZP) electrolyte were conducted to elucidate its characteristics and material functions. The following thermodynamic and/or kinetic properties of NASICON-type Li-ion conductive oxides were investigated with respect to the crystal structure mainly using material simulation and informatics approaches: (1) the electrochemical stabilities of LZP materials with respect to Li metal and (2) Li-ion conductivities in the bulk and at the grain boundaries. An efficient materials informatics search method was employed to optimise the material functions of the LZP electrolyte via Bayesian optimisation. This study should promote the application of LZP in all-solid-state batteries for use in technologies such as mobile devices and electric vehicles and enable more complex composition and process control.

3.
Sci Technol Adv Mater ; 21(1): 131-138, 2020.
Article in English | MEDLINE | ID: mdl-32194876

ABSTRACT

Solid electrolytes with high Mg-ion conductivity are required to develop solid-state Mg-ion batteries. The migration energies of the Mg2+ ions of 5,576 Mg compounds tabulated from the inorganic crystal structure database (ICSD) were evaluated via high-throughput calculations. Among the computational results, we focused on the Mg2+ ion diffusion in Mg0.6Al1.2 Si1.8O6, as this material showed a relatively low migration energy for Mg2+ and was composed solely of ubiquitous elements. Furthermore, first-principles molecular dynamics calculations confirmed a single-phase Mg2+ ion conductor. The bulk material with a single Mg0.6Al1.2Si1.8O6 phase was successfully prepared using the sol-gel method. The relative density of the sample was 81%. AC impedance measurements indicated an electrical conductivity of 1.6 × 10-6 Scm-1 at 500°C. The activation energy was 1.32 eV, which is comparable to that of monoclinic-type Mg0.5Zr2(PO4)3.

4.
RSC Adv ; 9(22): 12590-12595, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-35515861

ABSTRACT

Solid electrolyte materials exhibiting high Mg-ion conductivity are required to develop Mg-ion batteries. In this study, we focused on a Mg-ion-conducting solid phosphate based electrolyte, MgZr4(PO4)6 (MZP), and evaluated the ionic conductivity of NASICON-type and ß-iron sulfate-type MgZr4(PO4)6 structures via density functional theory calculations. The calculations suggest that the migration energy of Mg is 0.63 eV for the NASICON-type structure and 0.71 eV for the ß-iron sulfate-type one, and the NASICON-type structure has higher ion conductivity. Although the NASICON-type MZP structure has not been experimentally realised, there is only an energy difference of 14 meV per atom with respect to that of the ß-iron sulfate-type structure. Therefore, in order to develop a synthesis method for the NASICON-type structure, we investigated pressure- and temperature-dependent variations in the free energy of formation using density functional perturbation theory calculations. The results suggest that the formation of the NASICON-type structure is disfavoured under the 0-2000 K and 0-20 GPa conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...