Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Biol Chem ; : 107450, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844136

ABSTRACT

Structural variation of N-glycans is essential for the regulation of glycoprotein functions. GalNAcß1-4GlcNAc (LacdiNAc or LDN), a unique sub-terminal glycan structure synthesized by B4GALNT3 or B4GALNT4, is involved in the clearance of N-glycoproteins from the blood and maintenance of cell stemness. Such regulation of glycoprotein functions by LDN is largely different from that by the dominant sub-terminal structure, N-acetyllactosamine (Galß1-4GlcNAc, LacNAc). However, the mechanisms by which B4GALNT activity is regulated and how LDN plays different roles from LacNAc remain unclear. Here, we found that B4GALNT3 and 4 have unique domain organization containing a non-catalytic PA14 domain, which is a putative glycan-binding module. A mutant lacking this domain dramatically decreases the activity toward various substrates, such as N-glycan, O-GalNAc glycan, and glycoproteins, indicating that this domain is essential for enzyme activity and forms part of the catalytic region. In addition, to clarify the mechanism underlying the functional differences between LDN and LacNAc, we examined the effects of LDN on the maturation of N-glycans, focusing on the related glycosyltransferases up- and downstream of B4GALNT. We revealed that, unlike LacNAc synthesis, prior formation of bisecting GlcNAc in N-glycan almost completely inhibits LDN synthesis by B4GALNT3. Moreover, the presence of LDN negatively impacted the actions of many glycosyltransferases for terminal modifications, including sialylation, fucosylation, and human natural killer-1 (HNK-1) synthesis. These findings demonstrate that LDN has significant impacts on N-glycan maturation in a completely different way from LacNAc, which could contribute to obtaining a comprehensive overview of the system regulating complex N-glycan biosynthesis.

2.
Nat Commun ; 15(1): 4514, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802491

ABSTRACT

Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small 'Golgi units' that have 1-3 µm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call 'zones'. The zones of N- and O-glycosylation enzymes are colocalised. However, they are less colocalised with the zones of a glycosaminoglycan synthesizing enzyme. Golgi units change shapes dynamically and the zones of glycosylation enzymes rapidly move near the rim of the unit. Photobleaching analysis indicates that a glycosaminoglycan synthesizing enzyme moves between units. Depletion of giantin dissociates units and prevents the movement of glycosaminoglycan synthesizing enzymes, which leads to insufficient glycosaminoglycan synthesis. Thus, we show the structure-function relationship of the Golgi and its implications in human pathogenesis.


Subject(s)
Glycosaminoglycans , Golgi Apparatus , Golgi Apparatus/metabolism , Glycosylation , Humans , Glycosaminoglycans/metabolism , HeLa Cells , CRISPR-Cas Systems , Membrane Proteins/metabolism , Membrane Proteins/genetics , Golgi Matrix Proteins
3.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042483

ABSTRACT

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Subject(s)
Fucose , Inflammation , Lipopolysaccharides , Animals , Humans , Mice , Cytokine Receptor gp130 , Fucose/pharmacology , Fucose/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-6/genetics , Lipopolysaccharides/toxicity , Neuroinflammatory Diseases , RNA, Messenger
4.
J Biol Chem ; 299(8): 105052, 2023 08.
Article in English | MEDLINE | ID: mdl-37454739

ABSTRACT

Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.


Subject(s)
Disaccharides , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Mice , Disaccharides/pharmacology , Disease Models, Animal , Interleukin-6/genetics , Keratan Sulfate/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/genetics , Pulmonary Emphysema/chemically induced , Lectins, C-Type/metabolism
5.
J Biol Chem ; 299(7): 104905, 2023 07.
Article in English | MEDLINE | ID: mdl-37302553

ABSTRACT

A primary pathology of Alzheimer's disease (AD) is amyloid ß (Aß) deposition in brain parenchyma and blood vessels, the latter being called cerebral amyloid angiopathy (CAA). Parenchymal amyloid plaques presumably originate from neuronal Aß precursor protein (APP). Although vascular amyloid deposits' origins remain unclear, endothelial APP expression in APP knock-in mice was recently shown to expand CAA pathology, highlighting endothelial APP's importance. Furthermore, two types of endothelial APP-highly O-glycosylated APP and hypo-O-glycosylated APP-have been biochemically identified, but only the former is cleaved for Aß production, indicating the critical relationship between APP O-glycosylation and processing. Here, we analyzed APP glycosylation and its intracellular trafficking in neurons and endothelial cells. Although protein glycosylation is generally believed to precede cell surface trafficking, which was true for neuronal APP, we unexpectedly observed that hypo-O-glycosylated APP is externalized to the endothelial cell surface and transported back to the Golgi apparatus, where it then acquires additional O-glycans. Knockdown of genes encoding enzymes initiating APP O-glycosylation significantly reduced Aß production, suggesting this non-classical glycosylation pathway contributes to CAA pathology and is a novel therapeutic target.


Subject(s)
Acetylgalactosamine , Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Cerebral Amyloid Angiopathy , Glycosylation , Animals , Mice , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , Endothelial Cells/metabolism , Protein Transport , Neurons/metabolism , Golgi Apparatus/metabolism , Acetylgalactosamine/metabolism
6.
J Biol Chem ; 299(4): 103051, 2023 04.
Article in English | MEDLINE | ID: mdl-36813234

ABSTRACT

The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , NF-kappa B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Drug Resistance, Neoplasm , Receptors, Tumor Necrosis Factor, Type II/genetics , Signal Transduction , Doxorubicin/pharmacology , Polysaccharides/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism
7.
Methods Enzymol ; 679: 131-162, 2023.
Article in English | MEDLINE | ID: mdl-36682860

ABSTRACT

Protein-protein interactions are essential in biological reactions and fundamental to cell-cell communication (e.g., the binding of secreted proteins, such as hormones, to cell membrane receptors) and the subsequent intracellular signal transduction cascade. Several studies have been extensively carried out on protein-protein interactions because they have the potential to resolve various problems in molecular biology. Biochemical methods, such as chemical cross-linking and immunoprecipitation, have long been used to analyze which proteins interact with each other. However, there are some problems, such as unphysiological states and non-specific binding, that require the development of more useful experimental methods. This chapter discusses the "proximity labeling (Proteomics)" analysis technique, which has been attracting attention in protein-protein interaction analysis in recent years and is used in many biological studies. "Membrane proximity labeling (proteomics)," which analyzes the interaction of cell membrane proteins, and "intracellular proximity labeling (proteomics)" will be explained in-depth.


Subject(s)
Membrane Proteins , Proteomics , Proteomics/methods , Membrane Proteins/metabolism , Cell Membrane/metabolism , Staining and Labeling
8.
Antioxid Redox Signal ; 38(16-18): 1201-1211, 2023 06.
Article in English | MEDLINE | ID: mdl-36606688

ABSTRACT

Aims: The anticancer function of superoxide dismutases (SODs) is still controversial. SOD3 is an extracellular superoxide dismutase and contains a single N-glycan chain. The role played by the N-glycosylation of SOD3, as it relates to lung cancer, is poorly understood. For this, we performed the structural and functional analyses of the N-glycan of SOD3 in lung cancer. Results: We report herein that the fucose structure of the N-glycan in SOD3 was increased in the sera of patients with lung cancer. In cell lines of non-small lung cancer cell (NSCLC), we also found a high level of the core fucose structure in the N-glycan of SOD3, as determined by lectin blotting and mass spectrometry analysis. To address the roles of the core fucose structure of SOD3, we generated FUT8 (α1,6-fucosyltransferase) gene knockout A549 cells. Using these cells, we found that the core fucose structure of SOD3 was required for its secretion and enzymatic activity, which contributes to the suppression of cell growth of NSCLC cells. Innovation: The core fucosylation is required for the secretion and enzymatic activity of SOD3, which contributes to anti-tumor functions such as the suppression of cell growth of NSCLC. Conclusion: The N-glycans, especially those with core fucose structures, regulate the anti-tumor functions of SOD3 against NSCLC. Antioxid. Redox Signal. 38, 1201-1211.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Glycosylation , Fucose/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Polysaccharides/chemistry , Polysaccharides/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
9.
Elife ; 112022 12 08.
Article in English | MEDLINE | ID: mdl-36479973

ABSTRACT

C-type lectin receptors (CLRs) elicit immune responses upon recognition of glycoconjugates present on pathogens and self-components. While Dectin-1 is the best-characterized CLR recognizing ß-glucan on pathogens, the endogenous targets of Dectin-1 are not fully understood. Herein, we report that human Dectin-1 is a ligand for CLEC-2, another CLR expressed on platelets. Biochemical analyses revealed that Dectin-1 is a mucin-like protein as its stalk region is highly O-glycosylated. A sialylated core 1 glycan attached to the EDxxT motif of human Dectin-1, which is absent in mouse Dectin-1, provides a ligand moiety for CLEC-2. Strikingly, the expression of human Dectin-1 in mice rescued the lethality and lymphatic defect resulting from a deficiency of Podoplanin, a known CLEC-2 ligand. This finding is the first example of an innate immune receptor also functioning as a physiological ligand to regulate ontogeny upon glycosylation.


Subject(s)
Blood Platelets , Lectins, C-Type , Humans , Mice , Animals , Ligands , Glycosylation , Blood Platelets/metabolism , Lectins, C-Type/metabolism
10.
Commun Biol ; 5(1): 743, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915223

ABSTRACT

The number of N-glycan branches on glycoproteins is closely related to the development and aggravation of various diseases. Dysregulated formation of the branch produced by N-acetylglucosaminyltransferase-V (GnT-V, also called as MGAT5) promotes cancer growth and malignancy. However, it is largely unknown how the activity of GnT-V in cells is regulated. Here, we discover that the activity of GnT-V in cells is selectively upregulated by changing cellular N-glycans from mature to immature forms. Our glycomic analysis further shows that loss of terminal modifications of N-glycans resulted in an increase in the amount of the GnT-V-produced branch. Mechanistically, shedding (cleavage and extracellular secretion) of GnT-V mediated by signal peptide peptidase-like 3 (SPPL3) protease is greatly inhibited by blocking maturation of cellular N-glycans, resulting in an increased level of GnT-V protein in cells. Alteration of cellular N-glycans hardly impairs expression or localization of SPPL3; instead, SPPL3-mediated shedding of GnT-V is shown to be regulated by N-glycans on GnT-V, suggesting that the level of GnT-V cleavage is regulated by its own N-glycan structures. These findings shed light on a mechanism of secretion-based regulation of GnT-V activity.


Subject(s)
N-Acetylglucosaminyltransferases , Polysaccharides , Cell Line, Tumor , Glycoproteins/chemistry , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/metabolism
11.
J Biol Chem ; 298(9): 102400, 2022 09.
Article in English | MEDLINE | ID: mdl-35988645

ABSTRACT

The N-glycans attached to proteins contain various GlcNAc branches, the aberrant formation of which correlates with various diseases. N-Acetylglucosaminyltransferase-IVa (GnT-IVa or MGAT4A) and Gnt-IVb (or MGAT4B) are isoenzymes that catalyze the formation of the ß1,4-GlcNAc branch in N-glycans. However, the functional differences between these isozymes remain unresolved. Here, using cellular and UDP-Glo enzyme assays, we discovered that GnT-IVa and GnT-IVb have distinct glycoprotein preferences both in cells and in vitro. Notably, we show that GnT-IVb acted efficiently on glycoproteins bearing an N-glycan premodified by GnT-IV. To further understand the mechanism of this reaction, we focused on the noncatalytic C-terminal lectin domain, which selectively recognizes the product glycans. Replacement of a nonconserved amino acid in the GnT-IVb lectin domain with the corresponding residue in GnT-IVa altered the glycoprotein preference of GnT-IVb to resemble that of GnT-IVa. Our findings demonstrate that the C-terminal lectin domain regulates differential substrate selectivity of GnT-IVa and GnT-IVb, highlighting a new mechanism by which N-glycan branches are formed on glycoproteins.


Subject(s)
Glycoproteins , N-Acetylglucosaminyltransferases , Amino Acids , Glycoproteins/metabolism , Isoenzymes/metabolism , Lectins , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/metabolism , Uridine Diphosphate
12.
Cell Rep ; 39(5): 110768, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508142

ABSTRACT

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) exit the endoplasmic reticulum (ER) through a specialized export pathway in the yeast Saccharomyces cerevisiae. We have recently shown that a very-long acyl chain (C26) ceramide present in the ER membrane drives clustering and sorting of GPI-APs into selective ER exit sites (ERES). Now, we show that this lipid-based ER sorting also involves the C26 ceramide as a lipid moiety of GPI-APs, which is incorporated into the GPI anchor through a lipid-remodeling process after protein attachment in the ER. Moreover, we also show that a GPI-AP with a C26 ceramide moiety is monitored by the GPI-glycan remodelase Ted1, which, in turn, is required for receptor-mediated export of GPI-APs. Therefore, our study reveals a quality-control system that ensures lipid-based sorting of GPI-APs into selective ERESs for differential ER export, highlighting the physiological need for this specific export pathway.


Subject(s)
Ceramides , Endoplasmic Reticulum , Ceramides/metabolism , Endoplasmic Reticulum/metabolism , GPI-Linked Proteins/metabolism , Glycosylphosphatidylinositols/metabolism , Protein Transport , Saccharomyces cerevisiae/metabolism
13.
J Biol Chem ; 298(6): 101950, 2022 06.
Article in English | MEDLINE | ID: mdl-35447118

ABSTRACT

Asparagine-linked glycosylation (N-glycosylation) of proteins in the cancer secretome has been gaining increasing attention as a potential biomarker for cancer detection and diagnosis. Small extracellular vesicles (sEVs) constitute a large part of the cancer secretome, yet little is known about whether their N-glycosylation status reflects known cancer characteristics. Here, we investigated the N-glycosylation of sEVs released from small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) cells. We found that the N-glycans of SCLC-sEVs were characterized by the presence of structural units also found in the brain N-glycome, while NSCLC-sEVs were dominated by typical lung-type N-glycans with NSCLC-associated core fucosylation. In addition, lectin-assisted N-glycoproteomics of SCLC-sEVs and NSCLC-sEVs revealed that integrin αV was commonly expressed in sEVs of both cancer cell types, while the epithelium-specific integrin α6ß4 heterodimer was selectively expressed in NSCLC-sEVs. Importantly, N-glycomics of the immunopurified integrin α6 from NSCLC-sEVs identified NSCLC-type N-glycans on this integrin subunit. Thus, we conclude that protein N-glycosylation in lung cancer sEVs may potentially reflect the histology of lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glycosylation , Lung Neoplasms , Protein Processing, Post-Translational , Small Cell Lung Carcinoma , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Extracellular Vesicles/metabolism , Humans , Lung Neoplasms/pathology , Polysaccharides/metabolism , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology
14.
J Biol Chem ; 298(3): 101666, 2022 03.
Article in English | MEDLINE | ID: mdl-35104505

ABSTRACT

N-acetylglucosaminyltransferase-V (GnT-V or MGAT5) catalyzes the formation of an N-glycan ß1,6-GlcNAc branch on selective target proteins in the Golgi apparatus and is involved in cancer malignancy and autoimmune disease etiology. Several three-dimensional structures of GnT-V were recently solved, and the recognition mechanism of the oligosaccharide substrate was clarified. However, it is still unclear how GnT-V selectively acts on glycoprotein substrates. In this study, we focused on an uncharacterized domain at the N-terminal side of the luminal region (N domain) of GnT-V, which was previously identified in a crystal structure, and aimed to reveal its role in GnT-V action. Using lectin blotting and fluorescence assisted cell sorting analysis, we found that a GnT-VΔN mutant lacking the N domain showed impaired biosynthetic activity in cells, indicating that the N domain is required for efficient glycosylation. To clarify this mechanism, we measured the in vitro activity of purified GnT-VΔN toward various kinds of substrates (oligosaccharide, glycohexapeptide, and glycoprotein) using HPLC and a UDP-Glo assay. Surprisingly, GnT-VΔN showed substantially reduced activity toward the glycoprotein substrates, whereas it almost fully maintained its activity toward the oligosaccharides and the glycopeptide substrates. Finally, docking models of GnT-V with substrate glycoproteins suggested that the N domain could interact with the substrate polypeptide directly. Our findings suggest that the N domain of GnT-V plays a critical role in the recognition of glycoprotein substrates, providing new insights into the mechanism of substrate-selective biosynthesis of N-glycans.


Subject(s)
Glycoproteins , N-Acetylglucosaminyltransferases , Glycoproteins/metabolism , Glycosylation , Humans , N-Acetylglucosaminyltransferases/metabolism , Oligosaccharides/metabolism , Polysaccharides/metabolism
15.
FASEB J ; 36(2): e22149, 2022 02.
Article in English | MEDLINE | ID: mdl-34981577

ABSTRACT

N-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans. In this study, via examination by lectin blotting, HPLC, and mass spectrometry analysis, however, we found that the amounts of GlcNAc-branched tri-antennary N-glycans catalyzed by N-acetylglucosaminyltransferase IV (GnT-IV) and tetra-antennary N-glycans were significantly decreased in O-GlcNAc transferase knockdown cells (OGT-KD) compared with those in wild type cells. We examined this specific alteration by focusing on SLC35A3, which is the main UDP-GlcNAc transporter in mammals that is believed to modulate GnT-IV activation. It is interesting that a deficiency of SLC35A3 specifically leads to a decrease in the amounts of GlcNAc-branched tri- and tetra-antennary N-glycans. Furthermore, co-immunoprecipitation experiments have shown that SLC35A3 interacts with GnT-IV, but not with N-acetylglucosaminyltransferase V. Western blot and chemoenzymatic labeling assay have confirmed that OGT modifies SLC35A3 and that O-GlcNAcylation contributes to its stability. Furthermore, we found that SLC35A3-KO enhances cell spreading and suppresses both cell migration and cell proliferation, which is similar to the phenomena observed in the OGT-KD cells. Taken together, these data are the first to demonstrate that O-GlcNAcylation specifically governs the biosynthesis of tri- and tetra-antennary N-glycans via the OGT-SLC35A3-GnT-IV axis.


Subject(s)
Acetylglucosamine/metabolism , Membrane Transport Proteins/metabolism , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/metabolism , Cell Movement/physiology , Cell Proliferation/physiology , Glycosylation , HEK293 Cells , HeLa Cells , Humans
16.
PLoS One ; 16(9): e0257435, 2021.
Article in English | MEDLINE | ID: mdl-34529709

ABSTRACT

Glycosylphosphatidylinositol (GPI) anchoring of proteins is an essential post-translational modification in all eukaryotes that occurs at the endoplasmic reticulum (ER) and serves to deliver GPI-anchored proteins (GPI-APs) to the cell surface where they play a wide variety of vital physiological roles. This paper describes a specialized method for purification and structural analysis of the GPI glycan of individual GPI-APs in yeast. The protocol involves the expression of a specific GPI-AP tagged with GFP, enzymatic release from the cellular membrane fraction, immunopurification, separation by electrophoresis and analysis of the peptides bearing GPI glycans by mass spectrometry after trypsin digestion. We used specifically this protocol to address the structural remodeling that undergoes the GPI glycan of a specific GPI-AP during its transport to the cell surface. This method can be also applied to investigate the GPI-AP biosynthetic pathway and to directly confirm predicted GPI-anchoring of individual proteins.


Subject(s)
Polysaccharides/chemistry , Tandem Mass Spectrometry , Endoplasmic Reticulum/metabolism , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Saccharomyces cerevisiae/metabolism
17.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445285

ABSTRACT

N-glycosylation is essential for many biological processes in mammals. A variety of N-glycan structures exist, of which, the formation of bisecting N-acetylglucosamine (GlcNAc) is catalyzed by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene). We previously identified various bisecting GlcNAc-modified proteins involved in Alzheimer's disease and cancer. However, the mechanisms by which GnT-III acts on the target proteins are unknown. Here, we performed comparative glycoproteomic analyses using brain membranes of wild type (WT) and Mgat3-deficient mice. Target glycoproteins of GnT-III were enriched with E4-phytohemagglutinin (PHA) lectin, which recognizes bisecting GlcNAc, and analyzed by liquid chromatograph-mass spectrometry. We identified 32 N-glycosylation sites (Asn-Xaa-Ser/Thr, Xaa ≠ Pro) that were modified with bisecting GlcNAc. Sequence alignment of identified N-glycosylation sites that displayed bisecting GlcNAc suggested that GnT-III does not recognize a specific primary amino acid sequence. The molecular modeling of GluA1 as one of the good cell surface substrates for GnT-III in the brain, indicated that GnT-III acts on N-glycosylation sites located in a highly flexible and mobile loop of GluA1. These results suggest that the action of GnT-III is partially affected by the tertiary structure of target proteins, which can accommodate bisecting GlcNAc that generates a bulky flipped-back conformation of the modified glycans.


Subject(s)
Acetylglucosamine/metabolism , Brain/metabolism , Cell Membrane/metabolism , Peptides/metabolism , Receptors, AMPA/metabolism , Sequence Analysis, Protein , Acetylglucosamine/genetics , Animals , Cell Membrane/genetics , Glycosylation , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/metabolism , Peptide Mapping , Peptides/genetics , Receptors, AMPA/genetics
18.
Glycoconj J ; 38(2): 167-175, 2021 04.
Article in English | MEDLINE | ID: mdl-33710478

ABSTRACT

Glycans play an important physiological role and are drawing attention as biomarkers that capture pathophysiological changes. Glycans can be detected by mass spectrometry, but recently matrix-assisted laser desorption/ionization- mass spectrometry imaging (MALDI-MSI) has enabled the visualization of glycans distribution on tissues. In this study, focusing on sialylated glycan (sialoglycans), we investigated the amidation reaction used to visualize glycans distribution, and developed a method of sialic acid derivatization by benzylamidation which is more sensitive than conventional amidation. Furthermore, we adapted this method for visualizing glycans in formalin-fixed paraffin-embedded (FFPE) liver tissue from normal mice and non-alcoholic steatohepatitis (NASH) model mice using MALDI-MSI. As a result, an increase in the distribution of glycan N-Acetylneuraminic acid-(NeuAc) ions was observed in the NASH mouse liver, and the change in glycan structure in the NASH model was clarified.


Subject(s)
Liver/chemistry , N-Acetylneuraminic Acid/chemistry , Non-alcoholic Fatty Liver Disease/pathology , Polysaccharides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Fetuins/chemistry , Liver/pathology , Male , Mice, Inbred C57BL , Paraffin Embedding , Polysaccharides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tissue Fixation/methods
19.
J Biol Chem ; 296: 100354, 2021.
Article in English | MEDLINE | ID: mdl-33524390

ABSTRACT

Glycosylation, the most common posttranslational modification of proteins, is a stepwise process that relies on tight regulation of subcellular glycosyltransferase location to control the addition of each monosaccharide. Glycosyltransferases primarily reside and function in the endoplasmic reticulum (ER) and the Golgi apparatus; whether and how they traffic beyond the Golgi, how this trafficking is controlled, and how it impacts glycosylation remain unclear. Our previous work identified a connection between N-glycosylation and Rab11, a key player in the post-Golgi transport that connects recycling endosomes and other compartments. To learn more about the specific role of Rab11, we knocked down Rab11 in HeLa cells. Our findings indicate that Rab11 knockdown results in a dramatic enhancement in the sialylation of N-glycans. Structural analyses of glycans using lectins and LC-MS revealed that α2,3-sialylation is selectively enhanced, suggesting that an α2,3-sialyltransferase that catalyzes the sialyation of glycoproteins is activated or upregulated as the result of Rab11 knockdown. ST3GAL4 is the major α2,3-sialyltransferase that acts on N-glycans; we demonstrated that the localization of ST3GAL4, but not the levels of its mRNA, protein, or donor substrate, was altered by Rab11 depletion. In knockdown cells, ST3GAL4 is densely distributed in the trans-Golgi network, compared with the wider distribution in the Golgi and in other peripheral puncta in control cells, whereas the α2,6-sialyltransferase ST6GAL1 is predominantly localized to the Golgi regardless of Rab11 knockdown. This indicates that Rab11 may negatively regulate α2,3-sialylation by transporting ST3GAL4 to post-Golgi compartments (PGCs), which is a novel mechanism of glycosyltransferase regulation.


Subject(s)
Sialyltransferases/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Glycosylation , Golgi Apparatus/metabolism , HeLa Cells , Humans , Protein Transport , Rats , trans-Golgi Network/metabolism
20.
Sci Adv ; 6(50)2020 12.
Article in English | MEDLINE | ID: mdl-33310842

ABSTRACT

Protein sorting in the secretory pathway is crucial to maintain cellular compartmentalization and homeostasis. In addition to coat-mediated sorting, the role of lipids in driving protein sorting during secretory transport is a longstanding fundamental question that still remains unanswered. Here, we conduct 3D simultaneous multicolor high-resolution live imaging to demonstrate in vivo that newly synthesized glycosylphosphatidylinositol-anchored proteins having a very long chain ceramide lipid moiety are clustered and sorted into specialized endoplasmic reticulum exit sites that are distinct from those used by transmembrane proteins. Furthermore, we show that the chain length of ceramide in the endoplasmic reticulum membrane is critical for this sorting selectivity. Our study provides the first direct in vivo evidence for lipid chain length-based protein cargo sorting into selective export sites of the secretory pathway.


Subject(s)
Ceramides , Endoplasmic Reticulum , Ceramides/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Protein Transport , Secretory Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...