Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Chaos ; 34(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829787

ABSTRACT

We present a phase autoencoder that encodes the asymptotic phase of a limit-cycle oscillator, a fundamental quantity characterizing its synchronization dynamics. This autoencoder is trained in such a way that its latent variables directly represent the asymptotic phase of the oscillator. The trained autoencoder can perform two functions without relying on the mathematical model of the oscillator: first, it can evaluate the asymptotic phase and the phase sensitivity function of the oscillator; second, it can reconstruct the oscillator state on the limit cycle in the original space from the phase value as an input. Using several examples of limit-cycle oscillators, we demonstrate that the asymptotic phase and the phase sensitivity function can be estimated only from time-series data by the trained autoencoder. We also present a simple method for globally synchronizing two oscillators as an application of the trained autoencoder.

2.
Chaos ; 34(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38252777

ABSTRACT

We apply dynamic mode decomposition (DMD) to elementary cellular automata (ECA). Three types of DMD methods are considered, and the reproducibility of the system dynamics and Koopman eigenvalues from observed time series is investigated. While standard DMD fails to reproduce the system dynamics and Koopman eigenvalues associated with a given periodic orbit in some cases, Hankel DMD with delay-embedded time series improves reproducibility. However, Hankel DMD can still fail to reproduce all the Koopman eigenvalues in specific cases. We propose an extended DMD method for ECA that uses nonlinearly transformed time series with discretized Walsh functions and show that it can completely reproduce the dynamics and Koopman eigenvalues. Linear-algebraic backgrounds for the reproducibility of the system dynamics and Koopman eigenvalues are also discussed.

3.
Chaos ; 34(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38194370

ABSTRACT

We analyze the simplest model of identical coupled phase oscillators subject to two-body and three-body interactions with permutation symmetry and phase lags. This model is derived from an ensemble of weakly coupled nonlinear oscillators by phase reduction, where the first and second harmonic interactions with phase lags naturally appear. Our study indicates that the higher-order interactions induce anomalous transitions to synchrony. Unlike the conventional Kuramoto model, higher-order interactions lead to anomalous phenomena such as multistability of full synchronization, incoherent, and two-cluster states, and transitions to synchrony through slow switching and clustering. Phase diagrams of the dynamical regimes are constructed theoretically and verified by direct numerical simulations. We also show that similar transition scenarios are observed even if a small heterogeneity in the oscillators' frequency is included.

4.
Chaos ; 33(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37831791

ABSTRACT

We present a phase-amplitude reduction framework for analyzing collective oscillations in networked dynamical systems. The framework, which builds on the phase reduction method, takes into account not only the collective dynamics on the limit cycle but also deviations from it by introducing amplitude variables and using them with the phase variable. The framework allows us to study how networks react to applied inputs or coupling, including their synchronization and phase locking, while capturing the deviations of the network states from the unperturbed dynamics. Numerical simulations are used to demonstrate the effectiveness of the framework for networks composed of FitzHugh-Nagumo elements. The resulting phase-amplitude equations can be used in deriving optimal periodic waveforms or introducing feedback control for achieving fast phase locking while stabilizing the collective oscillations.

5.
Sci Rep ; 12(1): 15573, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114210

ABSTRACT

Turing instability is a fundamental mechanism of nonequilibrium self-organization. However, despite the universality of its essential mechanism, Turing instability has thus far been investigated mostly in classical systems. In this study, we show that Turing instability can occur in a quantum dissipative system and analyze its quantum features such as entanglement and the effect of measurement. We propose a degenerate parametric oscillator with nonlinear damping in quantum optics as a quantum activator-inhibitor unit and demonstrate that a system of two such units can undergo Turing instability when diffusively coupled with each other. The Turing instability induces nonuniformity and entanglement between the two units and gives rise to a pair of nonuniform states that are mixed due to quantum noise. Further performing continuous measurement on the coupled system reveals the nonuniformity caused by the Turing instability. Our results extend the universality of the Turing mechanism to the quantum realm and may provide a novel perspective on the possibility of quantum nonequilibrium self-organization and its application in quantum technologies.

6.
Front Comput Neurosci ; 16: 970643, 2022.
Article in English | MEDLINE | ID: mdl-35966280

ABSTRACT

Noise can shape the firing behaviors of neurons. Here, we show that noise acting on the fast variable of the Hedgehog burster can tune the spike counts of bursts via the self-induced stochastic resonance (SISR) phenomenon. Using the distance matching condition, the critical transition positions on the slow manifolds can be predicted and the stochastic periodic orbits for various noise strengths are obtained. The critical transition positions on the slow manifold with non-monotonic potential differences exhibit a staircase-like dependence on the noise strength, which is also revealed by the stepwise change in the period of the stochastic periodic orbit. The noise-tuned bursting is more coherent within each step while displaying mixed-mode oscillations near the boundaries between the steps. When noise is large enough, noise-induced trapping of the slow variable can be observed, where the number of coexisting traps increases with the noise strength. It is argued that the robustness of SISR underlies the generality of the results discovered in this paper.

7.
Phys Rev E ; 106(1-1): 014204, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974495

ABSTRACT

We propose a method for estimating the asymptotic phase and amplitude functions of limit-cycle oscillators using observed time series data without prior knowledge of their dynamical equations. The estimation is performed by polynomial regression and can be solved as a convex optimization problem. The validity of the proposed method is numerically illustrated by using two-dimensional limit-cycle oscillators as examples. As an application, we demonstrate data-driven fast entrainment with amplitude suppression using the optimal periodic input derived from the estimated phase and amplitude functions.

8.
Chaos ; 32(6): 063133, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35778147

ABSTRACT

We propose a definition of the asymptotic phase for quantum nonlinear oscillators from the viewpoint of the Koopman operator theory. The asymptotic phase is a fundamental quantity for the analysis of classical limit-cycle oscillators, but it has not been defined explicitly for quantum nonlinear oscillators. In this study, we define the asymptotic phase for quantum oscillatory systems by using the eigenoperator of the backward Liouville operator associated with the fundamental oscillation frequency. By using the quantum van der Pol oscillator with a Kerr effect as an example, we illustrate that the proposed asymptotic phase appropriately yields isochronous phase values in both semiclassical and strong quantum regimes.

9.
Chaos ; 31(10): 103121, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34717334

ABSTRACT

We perform a Koopman spectral analysis of elementary cellular automata (ECA). By lifting the system dynamics using a one-hot representation of the system state, we derive a matrix representation of the Koopman operator as the transpose of the adjacency matrix of the state-transition network. The Koopman eigenvalues are either zero or on the unit circle in the complex plane, and the associated Koopman eigenfunctions can be explicitly constructed. From the Koopman eigenvalues, we can judge the reversibility, determine the number of connected components in the state-transition network, evaluate the period of asymptotic orbits, and derive the conserved quantities for each system. We numerically calculate the Koopman eigenvalues of all rules of ECA on a one-dimensional lattice of 13 cells with periodic boundary conditions. It is shown that the spectral properties of the Koopman operator reflect Wolfram's classification of ECA.

10.
Chaos ; 31(9): 093124, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34598448

ABSTRACT

Optimal entrainment of limit-cycle oscillators by strong periodic inputs is studied on the basis of the phase-amplitude reduction and Floquet theory. Two methods for deriving the input waveforms that keep the system state close to the original limit cycle are proposed, which enable the use of strong inputs for entrainment. The first amplitude-feedback method uses feedback control to suppress deviations of the system state from the limit cycle, while the second amplitude-penalty method seeks an input waveform that does not excite large deviations from the limit cycle in the feedforward framework. Optimal entrainment of the van der Pol and Willamowski-Rössler oscillators with real or complex Floquet exponents is analyzed as examples. It is demonstrated that the proposed methods can achieve considerably faster entrainment and provide wider entrainment ranges than the conventional method that relies only on phase reduction.

11.
Chaos ; 31(6): 063113, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34241311

ABSTRACT

We consider a pair of collectively oscillating networks of dynamical elements and optimize their internetwork coupling for efficient mutual synchronization based on the phase reduction theory developed by Nakao et al. [Chaos 28, 045103 (2018)]. The dynamical equations describing a pair of weakly coupled networks are reduced to a pair of coupled phase equations, and the linear stability of the synchronized state between the networks is represented as a function of the internetwork coupling matrix. We seek the optimal coupling by minimizing the Frobenius and L1 norms of the internetwork coupling matrix for the prescribed linear stability of the synchronized state. Depending on the norm, either a dense or sparse internetwork coupling yielding efficient mutual synchronization of the networks is obtained. In particular, a sparse yet resilient internetwork coupling is obtained by L1-norm optimization with additional constraints on the individual connection weights.

12.
Chaos ; 30(11): 113131, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33261357

ABSTRACT

We provide an overview of the Koopman-operator analysis for a class of partial differential equations describing relaxation of the field variable to a stable stationary state. We introduce Koopman eigenfunctionals of the system and use the notion of conjugacy to develop spectral expansion of the Koopman operator. For linear systems such as the diffusion equation, the Koopman eigenfunctionals can be expressed as linear functionals of the field variable. The notion of inertial manifolds is shown to correspond to joint zero level sets of Koopman eigenfunctionals, and the notion of isostables is defined as the level sets of the slowest decaying Koopman eigenfunctional. Linear diffusion equation, nonlinear Burgers equation, and nonlinear phase-diffusion equation are analyzed as examples.

13.
Phys Rev E ; 101(2-1): 022203, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32168659

ABSTRACT

Reduction of a two-component FitzHugh-Nagumo model to a single-component model with long-range connection is considered on general networks. The reduced model describes a single chemical species reacting on the nodes and diffusing across the links with weighted long-range connections, which can be interpreted as a class of networked dynamical systems on a multigraph with local and nonlocal Laplace matrices that self-consistently emerge from the adiabatic elimination. We study the conditions for the instability of homogeneous states in the original and reduced models and show that Turing patterns can emerge in both models. We also consider generality of the adiabatic elimination for a wider class of slow-fast systems and discuss the peculiarity of the FitzHugh-Nagumo model.

14.
Phys Rev E ; 101(1-1): 012210, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069673

ABSTRACT

Optimal entrainment of a quantum nonlinear oscillator to a periodically modulated weak harmonic drive is studied in the semiclassical regime. By using the semiclassical phase-reduction theory recently developed for quantum nonlinear oscillators [Y. Kato, N. Yamamoto, and H. Nakao, Phys. Rev. Res. 1, 033012 (2019)10.1103/PhysRevResearch.1.033012], two types of optimization problems, one for the stability and the other for the phase coherence of the entrained state, are considered. The optimal waveforms of the periodic amplitude modulation can be derived by applying the classical optimization methods to the semiclassical phase equation that approximately describes the quantum limit-cycle dynamics. Using a quantum van der Pol oscillator with squeezing and Kerr effects as an example, the performance of optimization is numerically analyzed. It is shown that the optimized waveform for the entrainment stability yields faster entrainment to the driving signal than the case with a simple sinusoidal waveform, while that for the phase coherence yields little improvement from the sinusoidal case. These results are explained from the properties of the phase sensitivity function.

15.
Phys Rev E ; 100(4-1): 042205, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31770949

ABSTRACT

Optimization of mutual synchronization between a pair of limit-cycle oscillators with weak symmetric coupling is considered in the framework of the phase-reduction theory. By generalizing our previous study [S. Shirasaka, N. Watanabe, Y. Kawamura, and H. Nakao, Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling, Phys. Rev. E 96, 012223 (2017)2470-004510.1103/PhysRevE.96.012223] on the optimization of cross-diffusion coupling matrices between the oscillators, we consider optimization of mutual coupling signals to maximize the linear stability of the synchronized state, which are functionals of the past time sequences of the oscillator states. For the case of linear coupling, optimization of the delay time and linear filtering of coupling signals are considered. For the case of nonlinear coupling, general drive-response coupling is considered and the optimal response and driving functions are derived. The theoretical results are illustrated by numerical simulations.

16.
Philos Trans A Math Phys Eng Sci ; 377(2160): 20190041, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31656146

ABSTRACT

An overview is given on two representative methods of dynamical reduction known as centre-manifold reduction and phase reduction. These theories are presented in a somewhat more unified fashion than the theories in the past. The target systems of reduction are coupled limit-cycle oscillators. Particular emphasis is placed on the remarkable structural similarity existing between these theories. While the two basic principles, i.e. (i) reduction of dynamical degrees of freedom and (ii) transformation of reduced evolution equation to a canonical form, are shared commonly by reduction methods in general, it is shown how these principles are incorporated into the above two reduction theories in a coherent manner. Regarding the phase reduction, a new formulation of perturbative expansion is presented for discrete populations of oscillators. The style of description is intended to be so informal that one may digest, without being bothered with technicalities, what has been done after all under the word reduction. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.

17.
Chaos ; 28(4): 045103, 2018 Apr.
Article in English | MEDLINE | ID: mdl-31906627

ABSTRACT

A general phase reduction method for a network of coupled dynamical elements exhibiting collective oscillations, which is applicable to arbitrary networks of heterogeneous dynamical elements, is developed. A set of coupled adjoint equations for phase sensitivity functions, which characterize the phase response of the collective oscillation to small perturbations applied to individual elements, is derived. Using the phase sensitivity functions, collective oscillation of the network under weak perturbation can be described approximately by a one-dimensional phase equation. As an example, mutual synchronization between a pair of collectively oscillating networks of excitable and oscillatory FitzHugh-Nagumo elements with random coupling is studied.

18.
Sci Rep ; 7(1): 10698, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878249

ABSTRACT

A correction to this Article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

19.
Sci Rep ; 7(1): 1121, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28442760

ABSTRACT

In large random networks, each eigenvector of the Laplacian matrix tends to localize on a subset of network nodes having similar numbers of edges, namely, the components of each Laplacian eigenvector take relatively large values only on a particular subset of nodes whose degrees are close. Although this localization property has significant consequences for dynamical processes on random networks, a clear theoretical explanation has not yet been established. Here we analyze the origin of localization of Laplacian eigenvectors on random networks by using a perturbation theory. We clarify how heterogeneity in the node degrees leads to the eigenvector localization and that there exists a clear degree-eigenvalue correspondence, that is, the characteristic degrees of the localized nodes essentially determine the eigenvalues. We show that this theory can account for the localization properties of Laplacian eigenvectors on several classes of random networks, and argue that this localization should occur generally in networks with degree heterogeneity.

20.
Chaos ; 27(2): 023119, 2017 02.
Article in English | MEDLINE | ID: mdl-28249399

ABSTRACT

Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

SELECTION OF CITATIONS
SEARCH DETAIL
...