Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 70(8): 540-543, 2022.
Article in English | MEDLINE | ID: mdl-35908919

ABSTRACT

Herein, we developed secondary-alcohol-selective C-H alkylation of 1,3-butane diol by combining an acridinium photoredox catalyst and a thiophosphoric acid hydrogen atom transfer (HAT) catalyst. The use of non-coordinating solvent such as dichloromethane (DCM) improved secondary α-alkoxy C-H selectivity by lowering bond dissociation energy (BDE) through intramolecular hydrogen bonding.


Subject(s)
Hydrogen , Alkylation , Butylene Glycols , Hydrogen/chemistry , Oxidation-Reduction , Phosphates
2.
Chem Sci ; 11(44): 12206-12211, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-34094432

ABSTRACT

Hydroxyalkylation of N-heteroaromatics with aldehydes was achieved using a binary hybrid catalyst system comprising an acridinium photoredox catalyst and a thiophosphoric acid organocatalyst. The reaction proceeded through the following sequence: (1) photoredox-catalyzed single-electron oxidation of a thiophosphoric acid catalyst to generate a thiyl radical, (2) cleavage of the formyl C-H bond of the aldehyde substrates by a thiyl radical acting as a hydrogen atom transfer catalyst to generate acyl radicals, (3) Minisci-type addition of the resulting acyl radicals to N-heteroaromatics, and (4) a spin-center shift, photoredox-catalyzed single-electron reduction, and protonation to produce secondary alcohol products. This metal-free hybrid catalysis proceeded under mild conditions for a wide range of substrates, including isoquinolines, quinolines, and pyridines as N-heteroaromatics, as well as both aromatic and aliphatic aldehydes, and tolerated various functional groups. The reaction was applicable to late-stage derivatization of drugs and their leads.

SELECTION OF CITATIONS
SEARCH DETAIL
...