Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 117: 110245, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33493709

ABSTRACT

Damage accumulation in the bone under continuous daily loading causes local mechanical overloading known to induce osteocyte apoptosis, which promotes bone resorption to repair bone damage. However, only a few studies have investigated the mechanism of apoptosis in mechanically overloaded osteocytes. As mechanically stimulated osteocytes produce nitric oxide (NO), which triggers apoptosis in various cell types, we aimed to elucidate the mechanism underlying apoptosis in mechanically overloaded osteocytes, focusing on intracellular NO. To investigate the effects of force magnitude on apoptosis and intracellular NO production, we isolated osteocytes from DMP1-EGFP mice and subjected them to quantitative local forces via fibronectin-coated micro beads targeting integrin on the cell surface using a magnetic tweezer. Cell shrinkage was microscopically examined, and intracellular NO production was visualized using DAR-4 M. Mechanical stimulation revealed relationships between force magnitude, apoptosis, and intracellular NO production. The application of a smaller force resulted in no significant cell shrinkage or intracellular NO production; however, a larger force caused a rapid increase in intracellular NO production followed by cell shrinkage. Besides, intracellular NOS (NO synthase) inhibition and NO donation revealed the pro-apoptotic roles of NO in osteocytes. L-NAME (NOS inhibitor)-treated cells displayed no significant shrinkage under a larger force, whereas SNP (NO donor)-treated cells showed cell shrinkage and Annexin V fluorescence, indicating apoptosis. Collectively, our study demonstrates that larger force leads to NO production-mediated osteocyte shrinkage, implying an initial apoptotic response and highlighting the importance of NO production in bone damage.


Subject(s)
Bone Resorption , Osteocytes , Animals , Apoptosis , Bone and Bones , Mice , Nitric Oxide
2.
Biochem Biophys Res Commun ; 518(3): 579-583, 2019 10 20.
Article in English | MEDLINE | ID: mdl-31451222

ABSTRACT

For cellular adaptation in mechanical environments, it is important to consider transmission of forces from the outside to the inside of cells via a focal molecular complex. The focal molecular complex, which consists of integrin, talin, vinculin and actin, is known to form in response to a force applied via the extra-cellular matrix (ECM). In the early formation process of the complex, the complex-actin connection is reinforced. These structural changes of the nascent complex result in an increase in its mechanical integrity and overall stiffness, possibly leading to the maturation of the nascent complex by enhancing force transmission. In this study, we hypothesized that the complex component talin is a crucial factor in increasing the stiffness of the nascent complex. To test the hypothesis, we used atomic force microscopy (AFM) to measure the stiffness of the nascent complex using a probe coated with fibronectin. Stiffness measurements were conducted for intact and talin knocked-down cells. Our results demonstrated that talin was required to increase the stiffness of the nascent complex, which could be caused by the reinforced connection between the complex and actin filaments mediated by talin.


Subject(s)
Actins/metabolism , Extracellular Matrix/metabolism , Integrins/metabolism , Talin/metabolism , Actin Cytoskeleton/metabolism , Animals , Biomechanical Phenomena , Cell Line , Fibronectins/metabolism , Gene Knockdown Techniques , Mechanotransduction, Cellular , Mice , Talin/genetics
3.
Biochem Biophys Res Commun ; 484(2): 372-377, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28131835

ABSTRACT

Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486-654 and 754-889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754-889 exhibited lower unfolding energy for complete unfolding than residues 486-654. In addition, we found that residues 754-889 transition into intermediate conformations under lower tension than residues 486-654. Furthermore, residues 754-889 showed shorter persistence length in the intermediate conformation than residues 486-654, suggesting that residues 754-889 under tension exhibit separated α-helices, while residues 486-654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754-889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486-654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.


Subject(s)
Nanotechnology , Talin/chemistry , Microscopy, Atomic Force , Protein Conformation , Tensile Strength
4.
J Vet Med Sci ; 75(4): 523-6, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23154420

ABSTRACT

Puberty onset in mammals is tightly coupled to the animal's nutritional and metabolic state. In the present study, we evaluated the effects of a high-fat diet on leptin and adiponectin levels, leptin mRNA expression and puberty onset in female rats. On day 21, female rats were divided into 2 groups, normal food (NF) and high-fat food (HF). The HF group showed a significantly earlier (P<0.001) date of vaginal opening and lower body weight (P<0.001) than the NF group. The rats fed the HF food had a significantly heavier uterus (P<0.05) than those fed the NF food, whereas the serum leptin and adiponectin levels and leptin mRNA expression were not significantly different between the NF and HF groups. We speculate that the fat-induced nutritional imbalance in young females may lead to neuroendocrine dysfunction during adolescence.


Subject(s)
Dietary Fats/administration & dosage , Sexual Maturation/physiology , Adiponectin/blood , Adiponectin/genetics , Adiponectin/metabolism , Animals , Body Weight/physiology , Dietary Fats/metabolism , Eating/physiology , Female , Leptin/blood , Leptin/genetics , Leptin/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...