Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 39(7): 640-647, 2023 07.
Article in English | MEDLINE | ID: mdl-37208292

ABSTRACT

OBJECTIVE: To evaluate the reliability, maximum principal stress, shear stress, and crack initiation of a computer-aided design/computer-aided manufacturing (CAD/CAM) resin composite (RC) incorporating surface pre-reacted glass (S-PRG) filler for primary molar teeth. METHODS: Mandibular primary molar crowns fabricated by experimental (EB) or commercially available CAD/CAM RCs (HC) were prepared and cemented to a resinous abutment tooth using an adhesive resin cement (Cem) or a conventional glass-ionomer cement (CX). These specimens were subjected to a single compressive test (n = 5/each) and the step-stress accelerated life testing (SSALT) (n = 12/each). Data was evaluated using Weibull analyses and reliability was calculated. Afterwards, the maximum principal stress and crack initiation point of each crown was analyzed by finite element analysis. To evaluate bonding of EB and HC to dentin, microtensile bond strength (µTBS) testing was conducted using primary molar teeth (n = 10/each). RESULTS: There was no significant difference between the fracture loads of EB and HC for either cement (p > 0.05). The fracture loads of EB-CX and HC-CX were significantly lower than EB-Cem and HC-Cem (p < 0.05). The reliability at 600 N for EB-Cem was greater than that for EB-CX, HC-Cem, and HC-CX. The maximum principal stress concentrated on EB was lower than that on HC. The shear stress concentrated in the cement layer for EB-CX was higher than that for HC-CX. There was no significant difference among the µTBSs of EB-Cem, EB-CX, HC-Cem, and HC-CX (p > 0.05). SIGNIFICANCE: The crowns fabricated with the experimental CAD/CAM RC incorporating S-PRG filler yielded greater fracture loads and reliability than the crowns manufactured with commercially available CAD/CAM RC regardless of the luting materials. These findings suggest that the experimental CAD/CAM RC crown may be clinically useful for the restoration of primary molars.


Subject(s)
Crowns , Dental Cements , Reproducibility of Results , Resin Cements/chemistry , Glass Ionomer Cements , Molar , Composite Resins/chemistry , Computer-Aided Design , Materials Testing , Dental Stress Analysis
2.
Dent Mater ; 38(1): 158-168, 2022 01.
Article in English | MEDLINE | ID: mdl-34872741

ABSTRACT

OBJECTIVES: This study aimed to develop computer-aided design/computer-aided manufacturing (CAD/CAM) resin composite blocks (RCBs) containing surface pre-reacted glass-ionomer (S-PRG) filler for primary molar teeth and evaluate their physical properties and wear resistance. METHODS: Experimental CAD/CAM RCBs containing S-PRG filler for primary molar teeth (EB), a commercial CAD/CAM RCB (HC), two resin composites for primary teeth (BKP and BKZ) and one for permanent teeth (BⅡ) were used. Hardness tests, three-point bending tests, fracture toughness tests, and water absorption tests were conducted. Wear tests were conducted for these materials and stainless steel crowns (SSCs). RESULTS: The Vickers hardness of EB was lower than that of HC (p < 0.05), and there was no significant difference among BKZ, BKP, and BⅡ (p > 0.05). After 1 week of water immersion, EB and HC showed greater flexural strength than the other materials (p < 0.05). EB showed greater fracture toughness than the other materials (p < 0.05). The water absorption of EB was lower than that of HC, BKZ, and BKP (p < 0.05), and greater than that of BⅡ (p < 0.05). Antagonist wear was significantly smaller in EB than in HC and BⅡ (p < 0.05), and significantly greater than in BKZ (p < 0.05). Antagonist wear could not be measured in SSC because of excessive wear that was out of range of the surface roughness tester. SIGNIFICANCE: The CAD/CAM RCBs containing S-PRG filler for primary molar teeth developed in this study demonstrated adequate physical properties and wear performance, suggesting that they are suitable for restoration of primary molar teeth and could function in place of SSCs.


Subject(s)
Composite Resins , Computer-Aided Design , Ceramics , Materials Testing , Molar , Surface Properties
3.
J Mech Behav Biomed Mater ; 112: 104083, 2020 12.
Article in English | MEDLINE | ID: mdl-32979609

ABSTRACT

PURPOSE: Fractographic analysis has been used to investigate the fracture behavior of Computer-aided design/computer-aided manufacturing (CAD/CAM) composite crowns by subjecting them to compression tests. However, it is difficult to investigate details of the fracture, including its initiation and propagation, using in vitro tests. The aim of this study was to determine the fracture origins and the order of crack initiation of CAD/CAM composite crowns using in silico nonlinear dynamic finite element analysis (FEA). MATERIAL AND METHODS: The following materials were used: Cerasmart (CS), Katana Avencia Block (KA), and Shofu Block HC (HC) as CAD/CAM crowns, Panavia SA Cement Plus (SA) as a luting material, and Clearfil DC Core Plus (DC) as an abutment. The elastic moduli and fracture strain of each material were obtained from the stress-strain curve of in vitro three-point bending tests. The fracture origins and order of crack initiation of the materials were determined by in silico nonlinear dynamic compression analysis. Load-displacement curves were statistically compared with the results of the in vitro compression tests (Pearson's correlation test, α = 0.05). RESULTS: The nonlinear dynamic FEA demonstrated that crack initiation was primarily observed near the lingual side of the CAD/CAM crowns and immediately propagated to the central fossa. The models were fractured following the in vitro fracture strains, showing the same order for the products tested (CS/KA/HC, SA, and DC). Load-displacement curves with the use of CS, KA, and HC were significantly correlated to the corresponding in vitro compression tests results (CS: r = 0.985, p < 0.05, KA: r = 0.987, p < 0.05, and HC: r = 0.997, p < 0.05). CONCLUSIONS: The in silico model established in this study clarified the crack initiation of the CAD/CAM composite crowns and the order of crack initiation among the investigated products, suggesting that the present approach is useful for analyzing the fracture behavior of CAD/CAM composite crowns in detail.


Subject(s)
Computer-Aided Design , Crowns , Ceramics , Composite Resins , Computer Simulation , Dental Porcelain , Dental Stress Analysis , Glass Ionomer Cements , Materials Testing
4.
J Mech Behav Biomed Mater ; 104: 103697, 2020 04.
Article in English | MEDLINE | ID: mdl-32174439

ABSTRACT

PURPOSE: The aim of this study was to assess the validity of in silico models of three-point bending tests to reflect in vitro physical properties obtained from three commercially available computer-aided design/computer-aided manufacturing (CAD/CAM) resin composite blocks and demonstrate notchless triangular prism analysis with those properties. MATERIAL AND METHODS: Three types of commercially available CAD/CAM resin composite blocks were used: Cerasmart 300 (CS300; GC, Tokyo, Japan), Katana Avencia P Block (AP; Kuraray Noritake Dental, Tokyo, Japan), and KZR CAD HR3 Gamma Theta (GT; Yamakin, Osaka, Japan). In vitro/in silico three-point bending tests were conducted to obtain elastic modulus and fracture strain for non-linear dynamic finite element analysis (n = 10/each). Fractured surfaces of specimens after in vitro NTP tests were observed, and the fracture toughness of each CAD/CAM resin composite was obtained by in silico NTP analysis. RESULTS: Both in vitro and in silico load-displacement curves obtained from three-point bending tests were significantly correlated (p < 0.05). The elastic moduli of CS300, AP, and GT were 8.0 GPa, 10.0 GPa, and 9.0 GPa, respectively. The fracture toughness values obtained from in silico NTP analysis of CS300, AP, and GT were 5.057 MPa m1/2, 4.193 MPa m1/2, and 4.880 MPa m1/2, respectively. There was no significant difference in the length of the stable region among the three CAD/CAM resin composites (p = 0.09). CONCLUSIONS: The in silico approach established in this study showed acceptable reflection of in vitro physical properties and will be useful for assessing fracture toughness related to the longevity of CAD/CAM resin composites without wastage of materials.


Subject(s)
Composite Resins , Nonlinear Dynamics , Ceramics , Computer Simulation , Computer-Aided Design , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...