Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 635: 144-153, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36274364

ABSTRACT

Breast cancer is a complex heterogeneous disease with unique molecular subtypes, which limits the development of optimized treatment strategies for each subtype. Cancer gene therapy and potential therapeutics for advanced/refractory cancers can be promising for breast cancer. Combining tumor-tropic lipid nanoparticles (LNPs) and inducible caspase-9 (iC9) mRNA, we aimed to develop a novel treatment strategy for refractory breast cancer. LNP's anti-tumor effects were tested in vitro in three breast cancer cell lines: MDA-MB231, SKBR3, and MCF-7. Tumor cells were treated with LNPs encapsulated with eGFP or iC9 mRNA and chemical inducers of dimerization (CID). Apoptosis-related genes were evaluated by reverse transcriptase quantitative PCR. LNPs could efficiently deliver encapsulated GFP mRNA to all three cancer cell lines (>80% GFP expression. in target cells). Furthermore, LNPs encapsulated with iC9 mRNA (iC9-LNPs) and CID showed cytotoxic activity against all cancer cell lines in vitro. Interestingly, susceptibility to iC9 gene therapy was heterogeneous among cancer cell lines. iC9-LNPs with CID-induced potent cytotoxic effects against SKBR3 and MDA-MB231 cells, but only a mild cytotoxic effect on MCF7 cells. Quantification of apoptosis-related genes suggested that a high BAX/Bcl-2 ratio might be associated with iC9-LNP + CID susceptibility. Thus, cancer gene therapy using iC9-LNPs and CID could be a promising alternative for the treatment of breast cancers, especially for aggressive breast cancers.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Humans , Female , Caspase 9/genetics , Caspase 9/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/therapy , RNA, Messenger/genetics , Nanoparticles/chemistry
2.
Clin Transl Immunology ; 10(5): e1282, 2021.
Article in English | MEDLINE | ID: mdl-33976880

ABSTRACT

OBJECTIVES: As the prognosis of relapsed/refractory (R/R) acute myeloid leukaemia (AML) remains poor, novel treatment strategies are urgently needed. Clinical trials have shown that chimeric antigen receptor (CAR)-T cells for AML are more challenging than those targeting CD19 in B-cell malignancies. We recently developed piggyBac-modified ligand-based CAR-T cells that target CD116/CD131 complexes, also known as the GM-CSF receptor (GMR), for the treatment of juvenile myelomonocytic leukaemia. This study therefore aimed to develop a novel therapeutic method for R/R AML using GMR CAR-T cells. METHODS: To further improve the efficacy of the original GMR CAR-T cells, we have developed novel GMR CAR vectors incorporating a mutated GM-CSF for the antigen-binding domain and G4S spacer. All GMR CAR-T cells were generated using a piggyBac-based gene transfer system. The anti-tumor effect of GMR CAR-T cells was tested in mouse AML xenograft models. RESULTS: Nearly 80% of the AML cells predominant in myelomonocytic leukaemia were found to express CD116. GMR CAR-T cells exhibited potent cytotoxic activities against CD116+ AML cells in vitro. Furthermore, GMR CAR-T cells incorporating a G4S spacer significantly improved long-term in vitro and in vivo anti-tumor effects. By employing a mutated GM-CSF at residue 21 (E21K), the anti-tumor effects of GMR CAR-T cells were also improved especially in long-term in vitro settings. Although GMR CAR-T cells exerted cytotoxic effects on normal monocytes, their lethality on normal neutrophils, T cells, B cells and NK cells was minimal. CONCLUSIONS: GMR CAR-T cell therapy represents a promising strategy for CD116+ R/R AML.

3.
Eur J Pharmacol ; 609(1-3): 148-54, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19281809

ABSTRACT

The low-affinity sodium glucose cotransporter (SGLT2) is responsible for most of the glucose reabsorption in the kidney and has been highlighted as a novel therapeutic target for the treatment of diabetes. We discovered sergliflozin etabonate, a novel selective SGLT2 inhibitor, and found that selective inhibition of SGLT2 increased urinary glucose excretion and consequently decreased plasma glucose levels. In this report, we examined the antihyperglycemic effects of sergliflozin etabonate in normal and diabetic rats in comparison with those of a sulfonylurea (gliclazide) and an alpha-glucosidase inhibitor (voglibose). Sergliflozin etabonate increased urinary glucose excretion in a dose-dependent manner, and inhibited the increase in plasma glucose after sucrose loading independently of insulin secretion in normal rats. Sergliflozin etabonate also improved postprandial hyperglycemia in neonatal streptozotocin-induced diabetic rats; whereas gliclazide did not improve it. In rats with mild or moderate streptozotocin-induced diabetes, the degree of the antihyperglycemic effects of sergliflozin etabonate correlated with the severity of the diabetic condition. Sergliflozin etabonate did not affect the plasma glucose level of normal rats as seen with gliclazide. Chronic treatment with sergliflozin etabonate reduced the levels of glycated hemoglobin and fasting plasma glucose, and improved the glycemic response after glucose loading in Zucker fatty rats. In addition, sergliflozin etabonate did not affect the body weight or food intake. These data indicate that sergliflozin etabonate could improve glycemic control without its use resulting in insulin secretion, hypoglycemia, and body weight gain, and may provide a unique approach to the treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Glucosides/pharmacology , Hypoglycemic Agents/pharmacology , Sodium-Glucose Transporter 2 Inhibitors , Animals , Area Under Curve , Blood Glucose/analysis , Diabetes Mellitus, Experimental/blood , Dose-Response Relationship, Drug , Fasting , Glucose Tolerance Test , Glucosides/adverse effects , Glycated Hemoglobin/analysis , Glycosuria/chemically induced , Hypoglycemic Agents/adverse effects , Insulin/blood , Insulin/metabolism , Kinetics , Male , Rats , Rats, Zucker , Sodium-Glucose Transporter 2/physiology , Streptozocin/pharmacology
4.
J Pharmacol Exp Ther ; 327(1): 268-76, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18583547

ABSTRACT

The low-affinity sodium glucose cotransporter (SGLT2) plays an important role in renal glucose reabsorption and is a remarkable transporter as a molecular target for the treatment of diabetes. We have discovered remogliflozin etabonate, which is a novel category of selective SGLT2 inhibitors. Remogliflozin etabonate is a prodrug based on benzylpyrazole glucoside and is metabolized to its active form, remogliflozin, in the body. We identified remogliflozin to be a potent and highly selective SGLT2 inhibitor by examining COS-7 cells transiently expressing either high-affinity sodium glucose cotransporter (SGLT1) or SGLT2. Orally administered remogliflozin etabonate increased urinary glucose excretion in a dose-dependent manner in both mice and rats. By increasing urinary glucose excretion, remogliflozin etabonate inhibited the increase in plasma glucose after glucose loading without stimulating insulin secretion in normal rats. Remogliflozin etabonate also showed antihyperglycemic effects in both streptozotocin-induced diabetic rats in oral glucose tolerance and in db/db mice in the fed condition. Chronic treatment with remogliflozin etabonate reduced the levels of fasting plasma glucose and glycated hemoglobin, and it ameliorated glucosuria in db/db mice. In high-fat diet-fed Goto-Kakizaki rats, remogliflozin etabonate improved hyperglycemia, hyperinsulinemia, hypertriglyceridemia, and insulin resistance. This study demonstrates that treatment with remogliflozin etabonate exhibits antidiabetic efficacy in several rodent models and suggests that remogliflozin etabonate may be a new and useful drug for the treatment of diabetes.


Subject(s)
Glucosides/pharmacology , Hypoglycemic Agents/pharmacology , Pyrazoles/pharmacology , Sodium-Glucose Transporter 2 Inhibitors , Animals , COS Cells , Chlorocebus aethiops , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Glucose Tolerance Test , Glycosuria/chemically induced , Humans , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sodium-Glucose Transporter 2
SELECTION OF CITATIONS
SEARCH DETAIL
...