Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 665: 19-25, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37148742

ABSTRACT

SN-38, an active metabolite of irinotecan (CPT-11), is thought to circulate enterohepatically via organic anion-transporting polypeptides (OATPs), UDP-glucuronyl transferases (UGTs), multidrug resistance-related protein 2 (MRP2), and breast cancer resistance protein (BCRP). These transporters and enzymes are expressed in not only hepatocytes but also enterocytes. Therefore, we hypothesized that SN-38 circulates between the intestinal lumen and the enterocytes via these transporters and metabolic enzymes. To test this hypothesis, metabolic and transport studies of SN-38 and its glucuronide (SN-38G) were conducted in Caco-2 cells. The mRNA levels of UGTs, MRP2, BCRP, and OATP2B1 were confirmed in Caco-2 cells. SN-38 was converted to SN-38G in Caco-2 cells. The efflux of intracellularly generated SN-38G across the apical (digestive tract) membranes was significantly higher than the efflux across the basolateral (blood, portal vein) membranes of Caco-2 cells cultured on polycarbonate membranes. SN-38G efflux to the apical side was significantly reduced in the presence of MRP2 and BCRP inhibitors, suggesting that SN-38G is transported across the apical membrane by MRP2 and BCRP. Treatment of Caco-2 cells with OATP2B1 siRNA increased the SN-38 residue on the apical side, confirming that OATP2B1 is involved in the uptake of SN-38 into enterocytes. No SN-38 was detected on the basolateral side with or without siRNA treatment, suggesting that the enterohepatic circulation of SN-38 is limited, contrary to previous reports. These results suggest that SN-38 is absorbed into the enterocytes via OATP2B1, glucuronidated by UGTs to SN-38G, and excreted into the digestive tract lumen by MRP2 and BCRP. SN-38G can be deconjugated by ß-glucuronidase from intestinal bacteria in the digestive tract lumen to regenerate SN-38. We named this new concept of local drug circulation "intra-enteric circulation." This mechanism may allow SN-38 to circulate in the intestine and cause the development of delayed diarrhea, a serious side effect of CPT-11.


Subject(s)
Neoplasm Proteins , Humans , Irinotecan , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Caco-2 Cells , Neoplasm Proteins/genetics
2.
Appl Environ Microbiol ; 87(14): e0271920, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33990299

ABSTRACT

The cellulolytic insect symbiont bacterium Streptomyces sp. strain SirexAA-E secretes a suite of carbohydrate-active enzymes (CAZymes), which are involved in the degradation of various polysaccharides in the plant cell wall, in response to the available carbon sources. Here, we examined a poorly understood response of this bacterium to mannan, one of the major plant cell wall components. SirexAA-E grew well on mannose, carboxymethyl cellulose (CMC), and locust bean gum (LBG) as sole carbon sources in the culture medium. The secreted proteins from each culture supernatant were tested for their polysaccharide-degrading ability, and the composition of secreted CAZymes in each sample was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that mannose, LBG, and CMC induced the secretion of mannan and cellulose-degrading enzymes. Interestingly, two α-1,2-mannosidases were abundantly secreted during growth on mannose and LBG. Using genomic analysis, we found a unique 12-bp palindromic sequence motif at 4 locations in the SirexAA-E genome, two of which were found upstream of the above-mentioned α-1,2-mannosidase genes, along with a newly identified mannose and mannobiose-responsive transcriptional regulator, SsManR. Furthermore, the previously reported cellobiose-responsive repressor, SsCebR, was determined to also use mannobiose as an effector ligand. To test whether mannobiose induces the sets of genes under the control of the two regulators, SirexAA-E was grown on mannobiose, and the secretome composition was analyzed. As hypothesized, the composition of the mannobiose secretome combined sets of CAZymes found in both LBG and CMC secretomes, and thus they are likely under the regulation of both SsManR and SsCebR. IMPORTANCEStreptomyces sp. SirexAA-E, a microbial symbiont of biomass-harvesting insects, secretes a suite of polysaccharide-degrading enzymes dependent on the available carbon sources. However, the response of this bacterium to mannan has not been documented. In this study, we investigated the response of this bacterium to mannose, mannobiose, and galactomannan (LBG). By combining biochemical, proteomic, and genomic approaches, we discovered a novel mannose and mannobiose responsive transcriptional regulator, SsManR, which selectively regulates three α-1,2-mannosidase-coding genes. We also demonstrated that the previously described cellobiose responsive regulator, SsCebR, could use mannobiose as an effector ligand. Overall, our findings suggest that the Streptomyces sp. SirexAA-E responds to mannose and mannooligosaccharides through two different transcriptional repressors that regulate the secretion of the plant cell wall-degrading enzymes to extract carbon sources in the host environment.


Subject(s)
Bacterial Proteins/metabolism , Mannans/metabolism , Mannose/metabolism , Streptomyces/metabolism , Transcription Factors/metabolism , Animals , Bacterial Proteins/genetics , Carboxymethylcellulose Sodium/metabolism , Galactans/metabolism , Galactose/analogs & derivatives , Insecta/microbiology , Mannosidases/genetics , Mannosidases/metabolism , Plant Gums/metabolism , Streptomyces/growth & development , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...