Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
BMC Bioinformatics ; 23(1): 377, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114445

ABSTRACT

BACKGROUND: Transcription factors (TFs) play central roles in maintaining "stemness" of embryonic stem (ES) cells and their differentiation into several hundreds of adult cell types. The regulatory competence of TFs is routinely assessed by detecting target genes to which they bind. However, these data do not indicate which target genes are activated, repressed, or not affected by the change of TF abundance. There is a lack of large-scale studies that compare the genome binding of TFs with the expression change of target genes after manipulation of each TF. RESULTS: In this paper we associated human TFs with their target genes by two criteria: binding to genes, evaluated from published ChIP-seq data (n = 1868); and change of target gene expression shortly after induction of each TF in human ES cells. Lists of direction- and strength-specific regulated target genes are generated for 311 TFs (out of 351 TFs tested) with expected proportion of false positives less than or equal to 0.30, including 63 new TFs not present in four existing databases of target genes. Our lists of direction-specific targets for 152 TFs (80.0%) are larger that in the TRRUST database. In average, 30.9% of genes that respond greater than or equal to twofold to the induction of TFs are regulated targets. Regulated target genes indicate that the majority of TFs are either strong activators or strong repressors, whereas sets of genes that responded greater than or equal to twofold to the induction of TFs did not show strong asymmetry in the direction of expression change. The majority of human TFs (82.1%) regulated their target genes primarily via binding to enhancers. Repression of target genes is more often mediated by promoter-binding than activation of target genes. Enhancer-promoter loops are more abundant among strong activator and repressor TFs. CONCLUSIONS: We developed an atlas of regulated targets of TFs (ART-TF) in human ES cells by combining data on TF binding with data on gene expression change after manipulation of individual TFs. Sets of regulated gene targets were identified with a controlled rate of false positives. This approach contributes to the understanding of biological functions of TFs and organization of gene regulatory networks. This atlas should be a valuable resource for ES cell-based regenerative medicine studies.


Subject(s)
Human Embryonic Stem Cells , Adult , Chromatin Immunoprecipitation Sequencing , Embryonic Stem Cells , Gene Regulatory Networks , Humans , Transcription Factors/genetics
2.
Cell Rep ; 31(7): 107655, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433964

ABSTRACT

Transcription factors (TFs) play a pivotal role in determining cell states, yet our understanding of the causative relationship between TFs and cell states is limited. Here, we systematically examine the state changes of human pluripotent embryonic stem cells (hESCs) by the large-scale manipulation of single TFs. We establish 2,135 hESC lines, representing three clones each of 714 doxycycline (Dox)-inducible genes including 481 TFs, and obtain 26,998 microscopic cell images and 2,174 transcriptome datasets-RNA sequencing (RNA-seq) or microarrays-48 h after the presence or absence of Dox. Interestingly, the expression of essentially all the genes, including genes located in heterochromatin regions, are perturbed by these TFs. TFs are also characterized by their ability to induce differentiation of hESCs into specific cell lineages. These analyses help to provide a way of classifying TFs and identifying specific sets of TFs for directing hESC differentiation into desired cell types.


Subject(s)
Human Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Cell Differentiation/physiology , Cell Line , Human Embryonic Stem Cells/cytology , Humans , Single-Cell Analysis/methods
3.
eNeuro ; 6(5)2019.
Article in English | MEDLINE | ID: mdl-31540999

ABSTRACT

Bipolar disorder (BP) and schizophrenia (SCZ) are major psychiatric disorders, but the molecular mechanisms underlying the complicated pathologies of these disorders remain unclear. It is difficult to establish adequate in vitro models for pathological analysis because of the heterogeneity of these disorders. In the present study, to recapitulate the pathologies of these disorders in vitro, we established in vitro models by differentiating mature neurons from human induced pluripotent stem cells (hiPSCs) derived from BP and SCZ patient with contributive copy number variations, as follows: two BP patients with PCDH15 deletion and one SCZ patient with RELN deletion. Glutamatergic neurons and GABAergic neurons were induced from hiPSCs under optimized conditions. Both types of induced neurons from both hiPSCs exhibited similar phenotypes of MAP2 (microtubule-associated protein 2)-positive dendrite shortening and decreasing synapse numbers. Additionally, we analyzed isogenic PCDH15- or RELN-deleted cells. The dendrite and synapse phenotypes of isogenic neurons were partially similar to those of patient-derived neurons. These results suggest that the observed phenotypes are general phenotypes of psychiatric disorders, and our in vitro models using hiPSC-based technology may be suitable for analysis of the pathologies of psychiatric disorders.


Subject(s)
Bipolar Disorder/pathology , Cell Culture Techniques/methods , Neurons/pathology , Pluripotent Stem Cells , Schizophrenia/pathology , Adult , Bipolar Disorder/genetics , Cadherin Related Proteins , Cadherins/genetics , Cell Adhesion Molecules, Neuronal/genetics , Cells, Cultured , DNA Copy Number Variations , Extracellular Matrix Proteins/genetics , Female , Humans , In Vitro Techniques , Middle Aged , Nerve Tissue Proteins/genetics , Reelin Protein , Schizophrenia/genetics , Serine Endopeptidases/genetics
4.
Sci Rep ; 9(1): 913, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696889

ABSTRACT

The derivation of kidney tissues from human pluripotent stem cells (hPSCs) and its application for replacement therapy in end-stage renal disease have been widely discussed. Here we report that consecutive transfections of two sets of synthetic mRNAs encoding transcription factors can induce rapid and efficient differentiation of hPSCs into kidney tissues, termed induced nephron-like organoids (iNephLOs). The first set - FIGLA, PITX2, ASCL1 and TFAP2C, differentiated hPSCs into SIX2+SALL1+ nephron progenitor cells with 92% efficiency within 2 days. Subsequently, the second set - HNF1A, GATA3, GATA1 and EMX2, differentiated these cells into PAX8+LHX1+ pretubular aggregates in another 2 days. Further culture in both 2-dimensional and 3-dimensional conditions produced iNephLOs containing cells characterized as podocytes, proximal tubules, and distal tubules in an additional 10 days. Global gene expression profiles showed similarities between iNephLOs and the human adult kidney, suggesting possible uses of iNephLOs as in vitro models for kidneys.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kidney/cytology , Kidney/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA, Messenger/genetics , Transcription Factors/genetics , Biomarkers , Cell Culture Techniques , Cell Differentiation/genetics , Cell Lineage/genetics , Fluorescent Antibody Technique , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Immunophenotyping , Models, Biological , Nephrons , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
5.
Stem Cell Res Ther ; 9(1): 277, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30359326

ABSTRACT

BACKGROUND: Transplantation of pancreatic ß cells generated in vitro from pluripotent stem cells (hPSCs) such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) has been proposed as an alternative therapy for diabetes. Though many differentiation protocols have been developed for this purpose, lentivirus-mediated forced expression of transcription factors (TF)-PDX1 and NKX6.1-has been at the forefront for its relatively fast and straightforward approach. However, considering that such cells will be used for therapeutic purposes in the future, it is desirable to develop a procedure that does not leave any footprint on the genome, as any changes of DNAs could potentially be a source of unintended, concerning effects such as tumorigenicity. In this study, we attempted to establish a novel protocol for rapid and footprint-free hESC differentiation into a pancreatic endocrine lineage by using synthetic mRNAs (synRNAs) encoding PDX1 and NKX6.1. We also tested whether siPOU5F1, which reduces the expression of pluripotency gene POU5F1 (also known as OCT4), can enhance differentiation as reported previously for mesoderm and endoderm lineages. METHODS: synRNA-PDX1 and synRNA-NKX6.1 were synthesized in vitro and were transfected five times to hESCs with a lipofection reagent in a modified differentiation culture condition. siPOU5F1 was included only in the first transfection. Subsequently, cells were seeded onto a low attachment plate and aggregated by an orbital shaker. At day 13, the degree of differentiation was assessed by quantitative RT-PCR (qRT-PCR) and immunohistochemistry for endocrine hormones such as insulin, glucagon, and somatostatin. RESULTS: Both PDX1 and NKX6.1 expression were detected in cells co-transfected with synRNA-PDX1 and synRNA-NKX6.1 at day 3. Expression levels of insulin in the transfected cells at day 13 were 450 times and 14 times higher by qRT-PCR compared to the levels at day 0 and in cells cultured without synRNA transfection, respectively. Immunohistochemically, pancreatic endocrine hormones were not detected in cells cultured without synRNA transfection but were highly expressed in cells transfected with synRNA-PDX1, synRNA-NKX6.1, and siPOU5F1 at as early as day 13. CONCLUSIONS: In this study, we report a novel protocol for rapid and footprint-free differentiation of hESCs to endocrine cells.


Subject(s)
Homeodomain Proteins/genetics , Human Embryonic Stem Cells/metabolism , Insulin-Secreting Cells/metabolism , Insulin/biosynthesis , RNA, Messenger/chemical synthesis , Trans-Activators/genetics , Cell Differentiation , Cell Engineering/methods , Cells, Cultured , Gene Expression Regulation , Glucagon/biosynthesis , Homeodomain Proteins/metabolism , Human Embryonic Stem Cells/cytology , Humans , Insulin-Secreting Cells/cytology , Lipids/chemistry , Octamer Transcription Factor-3/antagonists & inhibitors , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Somatostatin/biosynthesis , Trans-Activators/metabolism , Transfection
6.
Sci Rep ; 8(1): 14215, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30242188

ABSTRACT

Multiple-system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure with various combinations of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. We previously reported that functionally impaired variants of COQ2, which encodes an essential enzyme in the biosynthetic pathway of coenzyme Q10, are associated with MSA. Here, we report functional deficiencies in mitochondrial respiration and the antioxidative system in induced pluripotent stem cell (iPSC)-derived neurons from an MSA patient with compound heterozygous COQ2 mutations. The functional deficiencies were rescued by site-specific CRISPR/Cas9-mediated gene corrections. We also report an increase in apoptosis of iPSC-derived neurons from MSA patients. Coenzyme Q10 reduced apoptosis of neurons from the MSA patient with compound heterozygous COQ2 mutations. Our results reveal that cellular dysfunctions attributable to decreased coenzyme Q10 levels are related to neuronal death in MSA, particularly in patients with COQ2 variants, and may contribute to the development of therapy using coenzyme Q10 supplementation.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Neurons/metabolism , Ubiquinone/analogs & derivatives , Adult , Alkyl and Aryl Transferases/metabolism , Amino Acid Sequence , Atrophy/metabolism , Atrophy/pathology , Base Sequence , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Mitochondria/metabolism , Mutation/genetics , Neurons/pathology , Ubiquinone/metabolism
7.
Biochem Biophys Res Commun ; 490(2): 296-301, 2017 08 19.
Article in English | MEDLINE | ID: mdl-28610919

ABSTRACT

Pluripotent human embryonic stem cells (hESCs) can differentiate into multiple cell lineages, thus, providing one of the best platforms to study molecular mechanisms during cell differentiation. Recently, we have reported rapid and efficient differentiation of hESCs into functional neurons by introducing a cocktail of synthetic mRNAs encoding five transcription factors (TFs): NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. Here we further tested a possibility that even single transcription factors, when expressed ectopically, can differentiate hESCs into neurons. To this end, we established hESC lines in which each of these TFs can be overexpressed by the doxycycline-inducible piggyBac vector. The overexpression of any of these five TFs indeed caused a rapid and rather uniform differentiation of hESCs, which were identified as neurons based on their morphologies, qRT-PCR, and immunohistochemistry. Furthermore, calcium-imaging analyses and patch clamp recordings demonstrated that these differentiated cells are electrophysiologically functional. Interestingly, neural differentiations occurred despite the cell culture conditions that rather promote the maintenance of the undifferentiated state. These results indicate that over-expression of each of these five TFs can override the pluripotency-specific gene network and force hESCs to differentiate into neurons.


Subject(s)
Cell Differentiation/genetics , Human Embryonic Stem Cells/cytology , Neurons/cytology , Transcription Factors/genetics , Transcription Factors/metabolism , Transgenes/genetics , Cells, Cultured , Human Embryonic Stem Cells/metabolism , Humans , Neurons/metabolism
8.
NPJ Aging Mech Dis ; 3: 1, 2017.
Article in English | MEDLINE | ID: mdl-28649419

ABSTRACT

Dry eye disease is the most prevalent pathological condition in aging eyes. One potential therapeutic strategy is the transplantation of lacrimal glands, generated in vitro from pluripotent stem cells such as human embryonic stem cells, into patients. One of the preceding requirements is a method to differentiate human embryonic stem cells into lacrimal gland epithelium cells. As the first step for this approach, this study aims to identify a set of transcription factors whose overexpression can promote the differentiation of human embryonic stem cells into lacrimal gland epithelium-like cells. We performed microarray analyses of lacrimal glands and lacrimal glands-related organs obtained from mouse embryos and adults, and identified transcription factors enriched in lacrimal gland epithelium cells. We then transfected synthetic messenger RNAs encoding human orthologues of these transcription factors into human embryonic stem cells and examined whether the human embryonic stem cells differentiate into lacrimal gland epithelium-like cells by assessing cell morphology and marker gene expression. The microarray analysis of lacrimal glands tissues identified 16 transcription factors that were enriched in lacrimal gland epithelium cells. We focused on three of the transcription factors, because they are expressed in other glands such as salivary glands and are also known to be involved in the development of lacrimal glands. We tested the overexpression of various combinations of the three transcription factors and PAX6, which is an indispensable gene for lacrimal glands development, in human embryonic stem cells. Combining PAX6, SIX1, and FOXC1 caused significant changes in morphology, i.e., elongated cell shape and increased expression (both RNAs and proteins) of epithelial markers such as cytokeratin15, branching morphogenesis markers such as BARX2, and lacrimal glands markers such as aquaporin5 and lactoferrin. We identified a set of transcription factors enriched in lacrimal gland epithelium cells and demonstrated that the simultaneous overexpression of these transcription factors can differentiate human embryonic stem cells into lacrimal gland epithelium-like cells. This study suggests the possibility of lacrimal glands regeneration from human pluripotent stem cells.

9.
Stem Cells Int ; 2017: 7215010, 2017.
Article in English | MEDLINE | ID: mdl-28491098

ABSTRACT

Human pluripotent stem cells (hPSCs) have the capacity to differentiate into essentially all cell types in the body. Such differentiation can be directed to specific cell types by appropriate cell culture conditions or overexpressing lineage-defining transcription factors (TFs). Especially, for the activation of myogenic program, early studies have shown the effectiveness of enforced expression of TFs associated with myogenic differentiation, such as PAX7 and MYOD1. However, the efficiency of direct differentiation was rather low, most likely due to chromatin features unique to hPSCs, which hinder the access of TFs to genes involved in muscle differentiation. Indeed, recent studies have demonstrated that ectopic expression of epigenetic-modifying factors such as a histone demethylase and an ATP-dependent remodeling factor significantly enhances myogenic differentiation from hPSCs. In this article, we review the recent progress for in vitro generation of skeletal muscles from hPSCs through forced epigenetic and transcriptional manipulation.

10.
In Vitro Cell Dev Biol Anim ; 53(2): 179-190, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27699651

ABSTRACT

Mouse Zinc finger and SCAN domain containing 4 (Zscan4) is encoded in multiple copies of Zscan4 genes, which are expressed in late two-cell stage preimplantation embryos and in 1-5% of the embryonic stem (ES) cell population at a given time. Due to the highly identical nucleotide sequences of multiple copies of Zscan4 paralogs and pseudogenes in the mouse Zscan4 genomic cluster, previous analyses have been done using exogenous transgenes under the regulation of Zscan4c promoter. In this manuscript, we generated knock-in mouse ES cell lines and mouse lines, in which the expression of endogenous Zscan4c, one of the Zscan4 genes, can be specifically monitored with a green fluorescent protein variant, Emerald. Interestingly, we found that only ∼30% of Zscan4-immunopositive ES cells were Emerald positive, suggesting that even when the Zscan4 locus is active, not all Zscan4 genes are expressed synchronously. We also carried out mass spectrometry of protein complexes associated with endogenous Zscan4 proteins. Taken together, our genetic engineering at an endogenous Zscan4c gene provides the first clue for the expression and function of each gene copy of Zscan4 locus in a physiological context.


Subject(s)
Blastocyst/metabolism , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Developmental , Genetic Loci , Mouse Embryonic Stem Cells/metabolism , Open Reading Frames/genetics , Transcription Factors/genetics , Animals , Blastocyst/drug effects , Chromosomal Proteins, Non-Histone/metabolism , Female , Gene Expression Regulation, Developmental/drug effects , Gene Knock-In Techniques , Gene Targeting , Genes, Reporter , Green Fluorescent Proteins/metabolism , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Promoter Regions, Genetic , Transcription Factors/metabolism , Tretinoin/pharmacology
11.
Development ; 143(20): 3674-3685, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27802135

ABSTRACT

Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings.


Subject(s)
Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Apoptosis/genetics , Apoptosis/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Chromatin Immunoprecipitation , Ectopic Gene Expression/genetics , Ectopic Gene Expression/physiology , Epigenesis, Genetic/genetics , Hepatocytes/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Immunoblotting , Jumonji Domain-Containing Histone Demethylases/genetics , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Biol Open ; 5(3): 311-22, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26873953

ABSTRACT

Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

14.
PLoS One ; 9(2): e87644, 2014.
Article in English | MEDLINE | ID: mdl-24558371

ABSTRACT

Freezing is usually used for preservation and storage of biological samples; however, this process may have some adverse effects such as cell membrane damage. Aquaporin (AQP), a water channel protein, has been suggested to play some roles for cryopreservation although its molecular mechanism remains unclear. Here we show that membrane damage caused by ultra-quick freezing is rescued by the expression of AQP4. We next examine if the expression of AQP combined with ultra-quick freezing can be used to select cells efficiently under freezing conditions where most cells are died. CHO cells stably expressing AQP4 were exclusively selected from mixed cell cultures. Having identified the increased expression of AQP4 during ES cell differentiation into neuro-ectoderm using bioinformatics, we confirmed the improved survival of differentiated ES cells with AQP4 expression. Finally we show that CHO cells transiently transfected with Endothelin receptor A and Aqp4 were also selected and concentrated by multiple cycles of freezing/thawing, which was confirmed with calcium imaging in response to endothelin. Furthermore, we found that the expression of AQP enables a reduction in the amount of cryoprotectants for freezing, thereby decreasing osmotic stress and cellular toxicity. Taken together, we propose that this simple but efficient and safe method may be applicable to the selection of mammalian cells for applications in regenerative medicine as well as cell-based functional assays or drug screening protocols.


Subject(s)
Aquaporin 4/metabolism , Cryopreservation/methods , Animals , Aquaporin 1/metabolism , CHO Cells , Cell Membrane/metabolism , Cell Membrane Permeability/genetics , Cell Survival , Cells, Cultured , Cricetinae , Cricetulus , Dogs , Embryonic Stem Cells/cytology , Freezing , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Transgenic , Neural Plate/metabolism , Osmosis , Plasmids/metabolism , Receptor, Endothelin A/metabolism
15.
BMC Biotechnol ; 13: 64, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23919313

ABSTRACT

BACKGROUND: Stable expression of transgenes is an important technique to analyze gene function. Various drug resistance genes, such as neo, pac, hph, zeo, bsd, and hisD, have been equally used as selection markers to isolate a transfectant without considering their dose-dependent characters. RESULTS: We quantitatively measured the variation of transgene expression levels in mouse embryonic stem (mES) cells, using a series of bi-cistronic expression vectors that contain Egfp expression cassette linked to each drug resistant gene via IRES with titration of the selective drugs, and found that the transgene expression levels achieved in each system with this vector design are in order, in which pac and zeo show sharp selection of transfectants with homogenously high expression levels. We also showed the importance of the choice of the drug selection system in gene-trap or gene targeting according to this order. CONCLUSIONS: The results of the present study clearly demonstrated that an appropriate choice of the drug resistance gene(s) is critical for a proper design of the experimental strategy.


Subject(s)
Embryonic Stem Cells/physiology , Gene Targeting/methods , Recombinant Fusion Proteins/analysis , Transgenes , Animals , Biotechnology/methods , Drug Resistance/genetics , Embryonic Stem Cells/metabolism , Genetic Markers/genetics , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Kinetics , Mice , Promoter Regions, Genetic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Selection, Genetic
16.
DNA Res ; 20(4): 391-402, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23649898

ABSTRACT

Mouse embryonic stem (ES) cells are prototypical stem cells that remain undifferentiated in culture for long periods, yet maintain the ability to differentiate into essentially all cell types. Previously, we have reported that ES cells oscillate between two distinct states, which can be distinguished by the transient expression of Zscan4 genes originally identified for its specific expression in mouse two-cell stage embryos. Here, we report that the nascent protein synthesis is globally repressed in the Zscan4-positive state of ES cells, which is mediated by the transient expression of newly identified eukaryotic translation initiation factor 1A (Eif1a)-like genes. Eif1a-like genes, clustered on Chromosome 12, show the high sequence similarity to the Eifa1 and consist of 10 genes (Eif1al1-Eif1al10) and 9 pseudogenes (Eif1al-ps1-Eif1al-ps9). The analysis of the expressed sequence tag database showed that Eif1a-like genes are expressed mostly in the two-cell stage mouse embryos. Microarray analyses and quantitative real-time polymerase chain reaction analyses show that Eif1a-like genes are expressed specifically in the Zscan4-positive state of ES cells. These results indicate a novel mechanism to repress protein synthesis by Eif1a-like genes and a unique mode of protein synthesis regulation in ES cells, which undergo a transient and reversible repression of global protein synthesis in the Zscan4-positive state.


Subject(s)
Embryonic Stem Cells/metabolism , Eukaryotic Initiation Factor-1/genetics , Gene Expression Regulation, Developmental , Protein Biosynthesis , Transcription Factors/genetics , Animals , Chromosomes, Mammalian , Embryo, Mammalian , Embryonic Stem Cells/classification , Embryonic Stem Cells/cytology , Eukaryotic Initiation Factor-1/classification , Eukaryotic Initiation Factor-1/metabolism , Expressed Sequence Tags , Mice , Multigene Family , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factors/metabolism
17.
Sci Rep ; 3: 1390, 2013.
Article in English | MEDLINE | ID: mdl-23462645

ABSTRACT

Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Animals , Cluster Analysis , Gene Expression Profiling , Gene Silencing , Mice , Models, Biological , RNA Interference , Transcription Factors/metabolism , Transcriptome
18.
Sci Rep ; 2: 208, 2012.
Article in English | MEDLINE | ID: mdl-22355722

ABSTRACT

The generation of induced pluripotent stem cells (iPSCs) by the forced expression of defined transcription factors in somatic cells holds great promise for the future of regenerative medicine. However, the initial reprogramming mechanism is still poorly understood. Here we show that Zscan4, expressed transiently in2-cell embryos and embryonic stem cells (ESCs), efficiently produces iPSCs from mouse embryo fibroblasts when coexpressed with Klf4, Oct4, and Sox2. Interestingly, the forced expression of Zscan4 is required onlyfor the first few days of iPSC formation. Microarray analysis revealed transient and early induction of preimplantation-specific genes in a Zscan4-dependent manner. Our work indicates that Zscan4 is a previously unidentified potent natural factor that facilitates the reprogramming process and reactivates early embryonic genes.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Kruppel-Like Transcription Factors/genetics , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/cytology , SOXB1 Transcription Factors/genetics , Transcription Factors/physiology , Animals , Cells, Cultured , Kruppel-Like Factor 4 , Mice , Oligonucleotide Array Sequence Analysis
19.
Cell Stem Cell ; 5(4): 420-33, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19796622

ABSTRACT

To examine transcription factor (TF) network(s), we created mouse ESC lines, in each of which 1 of 50 TFs tagged with a FLAG moiety is inserted into a ubiquitously controllable tetracycline-repressible locus. Of the 50 TFs, Cdx2 provoked the most extensive transcriptome perturbation in ESCs, followed by Esx1, Sox9, Tcf3, Klf4, and Gata3. ChIP-Seq revealed that CDX2 binds to promoters of upregulated target genes. By contrast, genes downregulated by CDX2 did not show CDX2 binding but were enriched with binding sites for POU5F1, SOX2, and NANOG. Genes with binding sites for these core TFs were also downregulated by the induction of at least 15 other TFs, suggesting a common initial step for ESC differentiation mediated by interference with the binding of core TFs to their target genes. These ESC lines provide a fundamental resource to study biological networks in ESCs and mice.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Regulatory Networks/physiology , Transcription Factors/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , CDX2 Transcription Factor , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Chromatin Immunoprecipitation , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/physiology , Gene Regulatory Networks/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/physiology , Immunoprecipitation , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/physiology , Mice , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/physiology , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
20.
FEBS J ; 276(22): 6658-68, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19843185

ABSTRACT

Polypyrimidine tract-binding protein (PTB) is a widely expressed RNA-binding protein with multiple roles in RNA processing, including the splicing of alternative exons, mRNA stability, mRNA localization, and internal ribosome entry site-dependent translation. Although it has been reported that increased expression of PTB is correlated with cancer cell growth, the role of PTB in mammalian development is still unclear. Here, we report that a homozygous mutation in the mouse Ptb gene causes embryonic lethality shortly after implantation. We also established Ptb(-/-) embryonic stem (ES) cell lines and found that these mutant cells exhibited severe defects in cell proliferation without aberrant differentiation in vitro or in vivo. Furthermore, cell cycle analysis and a cell synchronization assay revealed that Ptb(-/-) ES cells have a prolonged G(2)/M phase. Thus, our data indicate that PTB is essential for early mouse development and ES cell proliferation.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Blastocyst/cytology , Blastocyst/metabolism , Blotting, Northern , Cell Cycle/genetics , Cell Cycle/physiology , Cell Proliferation , Cells, Cultured , Embryo, Mammalian , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...