Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 8: e8893, 2020.
Article in English | MEDLINE | ID: mdl-32296608

ABSTRACT

BACKGROUND: Dietary fiber, including inulin, promotes health via fermentation products, such as short-chain fatty acids (SCFAs), produced from the fiber by gut microbiota. SCFAs exert positive physiological effects on energy metabolism, gut immunity, and the nervous system. Most of the commercial inulin is extracted from plant sources such as chicory roots, but it can also be enzymatically synthesized from sucrose using inulin producing enzymes. Studies conducted on rodents fed with a cafeteria diet have suggested that while increasing plasma propionic acid, synthetic inulin modulates glucose and lipid metabolism in the same manner as natural inulin. Therefore, this study aimed to determine the effects of a synthetic inulin, Fuji FF, on energy metabolism, fecal SCFA production, and microbiota profiles in mice fed with a high-fat/high-sucrose diet. METHODS: Three-week-old male C57BL/6J mice were fed a high-fat/high-sucrose diet containing cellulose or Fuji FF for 12 weeks, and the effects on energy metabolism, SCFA production, and microbiota profiles were evaluated. RESULTS: Body weight gain was inhibited by Fuji FF supplementation in high-fat/high-sucrose diet-fed C57BL/6J mice by reducing white adipose tissue weight while increasing energy expenditure, compared with the mice supplemented with cellulose. Fuji FF also elevated levels of acetic, propionic and butyric acids in mouse feces and increased plasma propionic acid levels in mice. Moreover, 16S rRNA gene amplicon sequencing of fecal samples revealed an elevated abundance of Bacteroidetes and a reduced abundance of Firmicutes at the phylum level in mice supplemented with Fuji FF compared to those supplemented with cellulose. Fuji FF also resulted in abundance of the family Bacteroidales S24-7 and reduction of Desulfovibrionaceae in the feces. CONCLUSION: Long term consumption of Fuji FF improved the gut environment in mice by altering the composition of the microbiota and increasing SCFA production, which might be associated with its anti-obesity effects.

2.
Sci Rep ; 10(1): 4158, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139755

ABSTRACT

Short-chain fatty acids (SCFAs), which are metabolites derived from the fermentation of dietary fibre by the gut microbiota, are important for host metabolic health. There is interest in probiotics for their beneficial effects on metabolic disorders, such as obesity, but the underlying mechanisms remain largely unknown. In this study, we evaluated whether Bifidobacterium animalis subsp. lactis GCL2505 (GCL2505), a probiotic strain capable of proliferating and increasing SCFA levels in the gut, exerts anti-metabolic syndrome effects via the SCFA receptor G protein-coupled receptor 43 (GPR43). A GCL2505 treatment suppressed body fat accumulation, improved glucose tolerance, and enhanced systemic fatty acid oxidation in high-fat diet (HFD)-fed wild type (WT) mice, whereas these effects were not observed in HFD-fed Gpr43 knockout (Gpr43-/-) mice. Caecal and plasma acetate levels were elevated by GCL2505 in WT and Gpr43-/- mice, but the negative correlation between plasma acetate levels and body fat accumulation was observed only in WT mice. We further demonstrated that GCL2505 suppressed insulin signalling in the adipose tissue via GPR43. These results suggested that increases in SCFA levels in response to GCL2505 enhance host energy expenditure, which decreases fat accumulation via activated GPR43.


Subject(s)
Bifidobacterium animalis/physiology , Energy Metabolism/physiology , Receptors, G-Protein-Coupled/metabolism , Acetates/blood , Animals , Energy Metabolism/genetics , Gastrointestinal Microbiome/physiology , Glucose Tolerance Test , Male , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Receptors, G-Protein-Coupled/genetics
3.
PLoS One ; 13(8): e0202083, 2018.
Article in English | MEDLINE | ID: mdl-30102711

ABSTRACT

The consumption of soybean protein has well-known favorable metabolic effects (e.g., reduced body weight, body fat, hyperglycemia, insulin resistance, hepatic steatosis, and lipogenesis). These effects of soy protein have been linked to modulation by the gut microbiota; however, the dynamic interplay among these factors remains unclear. Accordingly, we examined the metabolic phenotype, intestinal BA pool, and the gut microbiome of male C57BL/6 mice that were randomized to receive either a regular high-fat diet (HFD) or HFD that contained soybean protein isolate (SPI) in place of dairy protein. The intake of SPI significantly reduced the HFD-induced weight gain and adipose tissue mass accumulation and attenuated hepatic steatosis. Along with an enhancement in the secretion of intestinal Glucagon-like peptide-1 (GLP-1), an enlarged cecal BA pool with an elevated secondary/primary BA ratio was observed in the mice that consumed SPI, while fecal BA excretion remained unaltered. SPI also elicited dramatic changes in the gut microbiome, characterized by an expansion of taxa that may be involved in the biotransformation of BAs. The observed effects were abolished in germ-free (GF) mice, indicating that they were dependent on the microbiota. These findings collectively indicate that the metabolic benefits of SPI under the HFD regime may arise from a microbiota-driven increase in BA transformation and increase in GLP-1 secretion.


Subject(s)
Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/drug effects , Metabolic Networks and Pathways/drug effects , Obesity/etiology , Obesity/metabolism , Soybean Proteins/pharmacology , Animals , Biodiversity , Diet, High-Fat/adverse effects , Dietary Supplements , Glucagon-Like Peptide 1/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Metagenome , Metagenomics/methods , Mice
4.
Biochem Biophys Res Commun ; 501(4): 955-961, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29777704

ABSTRACT

The 8-globulin-rich mung bean protein (MPI) suppresses hepatic lipogenesis in rodent models and reduces fasting plasma glucose and insulin levels in obese adults. However, its effects on mitigating high fat diet (HFD)-induced obesity and the mechanism underlying these effects remain to be elucidated. Herein, we examined the metabolic phenotype, intestinal bile acid (BA) pool, and gut microbiota of conventionally raised (CONV-R) male C57BL/6 mice and germ-free (GF) mice that were randomized to receive either regular HFD or HFD containing mung bean protein isolate (MPI) instead of the dairy protein present in regular HFD. MPI intake significantly reduced HFD-induced weight gain and adipose tissue accumulation, and attenuated hepatic steatosis. Enhancement in the secretion of intestinal glucagon-like peptide-1 (GLP-1) and an enlarged cecal and fecal BA pool of dramatically elevated secondary/primary BA ratio were observed in mice that had consumed MPI. These effects were abolished in GF mice, indicating that the effects were dependent upon the presence of the microbiota. As revealed by 16S rRNA gene sequence analysis, MPI intake also elicited dramatic changes in the gut microbiome, such as an expansion of taxa belonging to the phylum Bacteroidetes along with a reduced abundance of the Firmicutes.


Subject(s)
Bile Acids and Salts/metabolism , Dietary Proteins/pharmacology , Gastrointestinal Microbiome/drug effects , Plant Proteins/pharmacology , Vigna/chemistry , Weight Gain/drug effects , Animals , Cecum/metabolism , Diet, High-Fat , Feces , Germ-Free Life , Male , Mice, Inbred C57BL , Phenotype
5.
PLoS One ; 12(7): e0179696, 2017.
Article in English | MEDLINE | ID: mdl-28692672

ABSTRACT

The regulation of inflammatory responses within adipose tissue by various types of immune cells is closely related to tissue homeostasis and progression of metabolic disorders such as obesity and type 2 diabetes. G-protein-coupled receptor 43 (GPR43), which is activated by short-chain fatty acids (SCFAs), is known to be most abundantly expressed in white adipose tissue and to modulate metabolic processes. Although GPR43 is also expressed in a wide variety of immune cells, whether and how GPR43 in adipose tissue immune cells regulates the inflammatory responses and metabolic homeostasis remains unknown. In this study, we investigated the role of GPR43 in adipose tissue macrophages by using Gpr43-deficient mice and transgenic mice with adipose-tissue-specific overexpression of GPR43. We found that GPR43 activation by SCFA resulted in induction of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in anti-inflammatory M2-type macrophages within adipose tissue. By contrast, this effect was not noted in inflammatory M1-type macrophages, suggesting that GPR43 plays distinct functions depending on macrophage types. Local TNF-α signaling derived from steady-state adipose tissue is associated with proper tissue remodeling as well as suppression of fat accumulation. Thus, GPR43-involving mechanism that we have identified supports maintenance of adipose tissue homeostasis and increase in metabolic activity. This newly identified facet of GPR43 in macrophages may have clinical implications for immune-metabolism related episodes.


Subject(s)
Adipose Tissue/metabolism , Cell Polarity , Fatty Acids, Volatile/metabolism , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Adipocytes/metabolism , Animals , Fatty Acids, Volatile/pharmacology , Inflammation/metabolism , Insulin Resistance , Mice , Mice, Inbred C57BL , Mice, Transgenic , RAW 264.7 Cells , Subcellular Fractions/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...