Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37762010

ABSTRACT

Neuroinflammation is a fundamental feature in the pathogenesis of amyotrophic lateral sclerosis (ALS) and arises from the activation of astrocytes and microglial cells. Previously, we reported that Miyako Bidens pilosa extract (MBP) inhibited microglial activation and prolonged the life span in a human ALS-linked mutant superoxide dismutase-1 (SOD1G93A) transgenic mouse model of ALS (G93A mice). Herein, we evaluated the effect of MBP on microglial activation in the spinal cord of G93A mice and lipopolysaccharide-stimulated BV-2 microglial cells. The administration of MBP inhibited the upregulation of the M1-microglia/macrophage marker (interferon-γ receptor (IFN-γR)) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6) in G93A mice. However, MBP did not affect the increase in the M2-microglia/macrophage marker (IL-13R) and anti-inflammatory cytokines (transforming growth factor (TGF)-ß and IL-10) in G93A mice. BV-2 cell exposure to MBP resulted in a decrease in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) reduction activity and bromodeoxyuridine incorporation, without an increase in the number of ethidium homodimer-1-stained dead cells. Moreover, MBP suppressed the production of lipopolysaccharide-induced pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in BV-2 cells. These results suggest that the selective suppression of M1-related pro-inflammatory cytokines is involved in the therapeutic potential of MBP in ALS model mice.


Subject(s)
Amyotrophic Lateral Sclerosis , Bidens , Humans , Animals , Mice , Microglia , Amyotrophic Lateral Sclerosis/drug therapy , Interleukin-6 , Lipopolysaccharides/toxicity , Cytokines , Disease Models, Animal
2.
Pharmacol Rep ; 75(3): 746-752, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36914846

ABSTRACT

BACKGROUND: Atomoxetine (ATX), a norepinephrine reuptake inhibitor (NRI), is used to attenuate the symptoms of Attention Deficit/Hyperactivity Disorder (AD/HD) by increasing neurotransmitter concentrations at the synaptic cleft. Although Nav1.2 voltage-gated sodium channels (VGSCs) are thought to play a role in monoamine transmitter release in the synaptic junction, it is unclear how atomoxetine affects Nav1.2 VGSCs. METHODS: In this study, we investigated the effect of ATX on Nav1.2 VGSC-transfected HEK293 cells with the whole-patch clamp technique. RESULTS: Nav1.2 VGSC current decreased by 51.15 ± 12.75% under treatment with 50 µM ATX in the resting state (holding membrane potential at - 80 mV). The IC50 of ATX against Nav1.2 VGSC current was 45.57 µM. The activation/inactivation curve of Nav1.2 VGSC currents was shifted toward hyperpolarization by 50 µM ATX. In addition, the inhibitory effect of ATX increased with membrane depolarization (holding membrane potential at - 50 mV) and its IC50 was 10.16 µM. Moreover, ATX showed the time-dependent interaction in the inactivation state. CONCLUSION: These findings suggest that ATX interacts with Nav1.2 VGSCs producing the inhibition of current and the modification of kinetic properties in the state-dependent manner.


Subject(s)
NAV1.2 Voltage-Gated Sodium Channel , Humans , Atomoxetine Hydrochloride/pharmacology , HEK293 Cells , Membrane Potentials
3.
Psychopharmacology (Berl) ; 239(10): 3133-3143, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35882635

ABSTRACT

RATIONALE: It is known that both selective serotonin and serotonin noradrenaline reuptake inhibitors (SSRI, SNRI) are first-line drugs for the treatment of major depressive disorder. It has also been considered that both SSRI and SNRI can improve the symptoms of major depressive disorder by increasing the concentration of monoamine in the synaptic cleft based on the monoamine hypothesis. However, accumulating evidence has indicated that inflammation in the brain may be a key factor in the pathophysiological mechanisms that underlie the development of major depressive disorder. OBJECTIVES: It has been advocated that microglial cells may regulate the inflammatory response under pathological conditions such as major depressive disorder. In this study, we focused on whether duloxetine can ameliorate the inflammatory response induced by lipopolysaccharide (LPS) in BV-2 microglial cells. RESULTS: Our results indicated that duloxetine significantly decreased the NO production induced by LPS. The increase in the protein expression level of iNOS induced by LPS was significantly decreased by treatment with duloxetine. Moreover, the increases in the protein expression levels of phosphorylated-IκBα, phosphorylated-Akt and Akt induced by LPS were also significantly decreased. Unexpectedly, the protein expression levels of other pro-inflammatory factors such as COX-2 and the phosphorylation ratios for various molecules including IκBα and Akt were not changed by treatment with duloxetine. CONCLUSIONS: These findings suggest that duloxetine may have an anti-inflammatory effect, which could contribute to its therapeutic effectiveness for major depressive disorder.


Subject(s)
Depressive Disorder, Major , Serotonin and Noradrenaline Reuptake Inhibitors , Animals , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2/metabolism , Depressive Disorder, Major/metabolism , Duloxetine Hydrochloride/pharmacology , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/pharmacology , Norepinephrine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Serotonin/metabolism , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology
4.
Eur J Pharmacol ; 908: 174316, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34280395

ABSTRACT

Citalopram, a selective serotonin reuptake inhibitor (SSRI), has been reported to have adverse effects such as cardiotoxicity, including prolongation of the QTc interval. Although citalopram is well known to be a racemic compound comprised of S-citalopram (escitalopram) and R-citalopram, it is still unclear which enantiomer is responsible for cardiotoxicity induced by citalopram. It is also unclear which biomolecule is the target that produces the adverse effect of citalopram. In this study, we investigated whether citalopram, escitalopram and R-citalopram had an electrophysiological effect on Nav1.5 voltage-gated sodium channel (VGSC) current and how their electrophysiological properties affected Nav1.5 VGSC. To examine the effects of the electrophysiological properties of them, whole-cell patch clamp recording was performed using HEK293 cells expressing human Nav1.5 VGSCs. Nav1.5 VGSC current decreased by 60.0 ± 6.3% and 55.1 ± 12.5% under treatment with 100 µM citalopram and escitalopram, respectively. However, 100 µM R-citalopram decreased Nav1.5 VGSC current by only 36.2 ± 8.7%. In addition, treatment with 100 µM citalopram and escitalopram changed the voltage-dependence of activation and induced a negative shift of the voltage of half-maximal activation compared to 100 µM R-citalopram. In contrast, treatment with 100 µM citalopram and escitalopram, but not R-citalopram, changed the voltage-dependence of inactivation, and the voltage at half-maximal inactivation slightly shifted toward negative potential. These results suggest that the adverse cardiac effect produced by citalopram might result from modification of the electrophysiological properties of Nav1.5 VGSCs, and escitalopram might contribute more to this adverse effect than R-citalopram.


Subject(s)
Citalopram , NAV1.5 Voltage-Gated Sodium Channel , Escitalopram , HEK293 Cells , Humans , Selective Serotonin Reuptake Inhibitors
5.
J Ethnopharmacol ; 259: 112963, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32439405

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Goshajinkigan (GJG), a traditional Japanese Kampo formula, has been shown to exhibit several pharmacological actions, including antinociceptive effects. Processed aconite root (PA), which is considered to be an active ingredient of GJG, has also been demonstrated to have an ameliorative effect on pain, such as diabetic peripheral neuropathic pain. We recently identified neoline as the active ingredient of both GJG and PA that is responsible for its effects against oxaliplatin-induced neuropathic pain in mice. AIM OF THE STUDY: In the present study, we investigated whether GJG, PA, and neoline could inhibit Nav1.7 voltage-gated sodium channel (VGSC) current and whether neoline could ameliorate mechanical hyperalgesia in diabetic mice. MATERIALS AND METHODS: To assess the electrophysiological properties of GJG extract formulation, powdered PA, and neoline on Nav1.7 VGSCs, whole-cell patch clamp recording was performed using human HEK293 cells expressing Nav1.7 VGSCs. In addition, the ameliorative effects of neoline on diabetic peripheral neuropathic pain were evaluated using the von Frey test in streptozotocin (STZ)-induced diabetic model mice. RESULTS: GJG extract formulation significantly inhibited Nav1.7 VGSC peak current. Powdered PA also inhibited Nav1.7 VGSC peak current. Like GJG and PA, neoline could inhibit Nav1.7 VGSC current. When diabetic mice were treated with neoline by intraperitoneal acute administration, the mechanical threshold was increased in diabetic mice, but not in non-diabetic mice, in a behavioral study. CONCLUSION: These results suggest that neoline might be a novel active ingredient of GJG and PA that is one of responsible ingredients for ameliorating mechanical hyperalgesia in diabetes via the inhibition of Nav1.7 VGSC current at least.


Subject(s)
Aconitine/analogs & derivatives , Aconitum , Analgesics/pharmacology , Diabetic Neuropathies/prevention & control , Drugs, Chinese Herbal/pharmacology , Hyperalgesia/prevention & control , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Plant Roots , Voltage-Gated Sodium Channel Blockers/pharmacology , Aconitine/isolation & purification , Aconitine/pharmacology , Aconitum/chemistry , Analgesics/isolation & purification , Animals , Behavior, Animal/drug effects , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/etiology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/physiopathology , Drugs, Chinese Herbal/isolation & purification , HEK293 Cells , Humans , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Membrane Potentials , Mice, Inbred ICR , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain Threshold/drug effects , Plant Roots/chemistry , Voltage-Gated Sodium Channel Blockers/isolation & purification
6.
Biol Pharm Bull ; 41(9): 1471-1474, 2018.
Article in English | MEDLINE | ID: mdl-30175781

ABSTRACT

Escitalopram, a selective serotonin reuptake inhibitor (SSRI), may induce seizures, particularly in epileptic patients. In this study, we investigated the effect of escitalopram in Nav1.2 voltage-gated sodium channels (VGSCs) transfected HEK293 cells. Nav1.2 VGSCs current decreased by approximately 50.7±8.3% under treatment with 100 µM escitalopram. The IC50 of escitalopram against Nav1.2 VGSCs was 114.17 µM. Moreover, the treatment with 100 µM escitalopram changed the voltage-dependence of inactivation and the voltage at half-maximal inactivation shifted significantly from -50.3±3.7 to -56.7±6.0 mV toward negative potential under treatment with 100 µM escitalopram. Surprisingly, the treatment with 100 µM escitalopram also changed the voltage-dependence of activation and the voltage at half-maximal activation shifted significantly from -13.8±4.6 to -21.5±3.9 mV toward negative potential under treatment with 100 µM escitalopram. These findings suggested that escitalopram might be able to inhibit Nav1.2 VGSCs current and affects both activation and inactivation states of Nav1.2 VGSCs.


Subject(s)
Citalopram/pharmacology , NAV1.2 Voltage-Gated Sodium Channel/physiology , Selective Serotonin Reuptake Inhibitors/pharmacology , HEK293 Cells , Humans
7.
Eur J Pharmacol ; 815: 381-390, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28970010

ABSTRACT

Glycyrrhiza (the roots and rhizomes of licorice) has been used worldwide as both an herbal nutraceutical and herbal medicine. In addition, it is well known that Glycyrrhiza contains various compounds with biological effects, such as anti-viral, anti-inflammatory, immunoregulatory, anti-tumor and neuroprotective effects. Among the various compounds in Glycyrrhiza, the active compounds that show biological activity are thought to include glycyrrhizin, glycyrrhetinic acid, glabridin, licochalcones and liquiritin. In the present study, we investigated the biological effects of three of these compounds (glycyrrhizin, liquiritin and isoliquiritin) on B65 neuroblastoma cells derived from serotonergic neurons. Among these three compounds, only liquiritin enhanced the proliferation of B65 neuroblastoma cells. In contrast, both glycyrrhizin and isoliquiritin, particularly at high concentrations had cytotoxic effects. Cells were treated with various cytotoxic agents and liquiritin could ameliorate the cytotoxicity induced by menadione sodium bisulfate in a dose-dependent manner. We also examined the effect of liquiritin on cell survival by evaluating the expression levels of phospho-p44/42 mitogen-activated protein kinase, cyclin-related proteins and glucose-6-phosphate dehydrogenase, which produces nicotinamide adenine dinucleotide phosphate. Under treatment with liquiritin, the protein expression level of glucose-6-phosphate dehydrogenase increased in a dose-dependent manner. In contrast, the protein expression level of cyclin-related proteins did not change at all under treatment with liquiritin. These results suggest that liquiritin, which is contained in Glycyrrhiza, may enhance cell survival by increasing the protein expression level of glucose-6 phosphate dehydrogenase.


Subject(s)
Antioxidants/pharmacology , Flavanones/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Glucosephosphate Dehydrogenase/metabolism , Glucosides/pharmacology , Neuroblastoma/pathology , Neuroprotective Agents/pharmacology , Cell Line, Tumor , Humans , Membrane Potential, Mitochondrial/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism
8.
J Tradit Complement Med ; 7(1): 34-44, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28053886

ABSTRACT

Yokukansan, a traditional Japanese herbal medicine, has been considered to be a novel alternative treatment for several neurological diseases such as neurodegenerative disorders, as well as neurosis, insomnia, and behavioral and psychological symptoms in Alzheimer's disease. Moreover, it has been shown that yokukansan has antidepressant-like and pain-relieving effects in animal models. Recently, several studies have shown that yokukansan has a neuroprotective effect. In this study, we focused on whether or no yokukansan influences cell proliferation related to cell-cycle progression by using B65 neuroblastoma cells derived from monoaminergic neurons. Under treatment with yokukansan, the proliferation rate of B65 neuroblastoma cells significantly increased in a dose-dependent manner. In particular, a proliferative effect was observed after treatment with yokukansan for 48 h and 72 h. Moreover, among seven medicinal herbs that comprise yokukansan, both Bupleuri Radix and Glycyrrhize Radix also enhanced the proliferation of B65 neuroblastoma cells. We assessed the effect of yokukansan on p44/42 mitogen-activated protein kinase (MAPK) phosphorylation in B65 neuroblastoma cells, and found that yokukansan increased p44/42 MAPK phosphorylation after treatment for 48 h. In contrast, neither Bupleuri Radix nor Glycyrrhize Radix altered the level of p44/42 MAPK phosphorylation, although they did increase cell proliferation. Our findings suggest that yokukansan has a cell-proliferative due to both Bupleuri Radix and Glycyrrhize Radix, and this is unrelated to the p44/42 MAPK signaling cascade.

9.
Biol Pharm Bull ; 39(7): 1121-9, 2016.
Article in English | MEDLINE | ID: mdl-27374287

ABSTRACT

Astroglial cells have been considered to have passive brain function by helping to maintain neurons. However, recent studies have revealed that the dysfunction of such passive functions may be associated with various neuropathological diseases, such as schizophrenia, Alzheimer's disease, amyotrophic lateral sclerosis and major depression. Corticosterone (CORT), which is often referred to as the stress hormone, is a well-known regulator of peripheral immune responses and also shows anti-inflammatory properties in the brain. However, it is still obscure how CORT affects astroglial cell function. In this study, we investigated the effects of CORT on the proliferation and survival of astroglial cells using C6 glioma cells. Under treatment with CORT for 24h, the proliferation of C6 glioma cells decreased in a dose-dependent manner. Moreover, this inhibition was diminised by treatment with mifepristone, a glucocorticoid receptor (GR) antagonist, but not by spironolactone, a mineralocorticoid receptor (MR) antagonist, and was independent of GR phosphorylation and other GR-related intracellular signaling cascades. Furthermore, it was observed that the translocation of GR from the cytosol to the nucleus was promoted by the treatment with CORT. These results indicate that CORT decreases the proliferation of C6 glioma cells by modifying the transcription of a particular gene related to cell proliferation independent of GR phosphorylation.


Subject(s)
Cell Proliferation/drug effects , Corticosterone/pharmacology , Receptors, Glucocorticoid/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Glioma/metabolism , Hormone Antagonists/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mifepristone/pharmacology , Rats , Receptors, Mineralocorticoid/metabolism , Spironolactone/pharmacology
10.
J Pharmacol Sci ; 130(2): 117-22, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26883453

ABSTRACT

Oxaliplatin is a chemotherapeutic agent that is effective against various types of cancer including colorectal cancer. Acute cold hyperalgesia is a serious side effect of oxaliplatin treatment. Although the therapeutic drug pregabalin is beneficial for preventing peripheral neuropathic pain by targeting the voltage-dependent calcium channel α2δ-1 (Cavα2δ-1) subunit, the effect of oxaliplatin-induced acute cold hypersensitivity is uncertain. To analyze the contribution of the Cavα2δ-1 subunit to the development of oxaliplatin-induced acute cold hypersensitivity, Cavα2δ-1 subunit expression in the rat spinal cord was analyzed after oxaliplatin treatment. Behavioral assessment using the acetone spray test showed that 6 mg/kg oxaliplatin-induced cold hypersensitivity 2 and 4 days later. Oxaliplatin-induced acute cold hypersensitivity 4 days after treatment was significantly inhibited by pregabalin (50 mg/kg, p.o.). Oxaliplatin (6 mg/kg, i.p.) treatment increased the expression level of Cavα2δ-1 subunit mRNA and protein in the spinal cord 2 and 4 days after treatment. Immunohistochemistry showed that oxaliplatin increased Cavα2δ-1 subunit protein expression in superficial layers of the spinal dorsal horn 2 and 4 days after treatment. These results suggest that oxaliplatin treatment increases Cavα2δ-1 subunit expression in the superficial layers of the spinal cord and may contribute to functional peripheral acute cold hypersensitivity.


Subject(s)
Antineoplastic Agents/toxicity , Calcium Channels/metabolism , Gene Expression/drug effects , Organoplatinum Compounds/toxicity , Spinal Cord/metabolism , Acute Disease , Animals , Calcium Channels/genetics , Cryopyrin-Associated Periodic Syndromes/chemically induced , Cryopyrin-Associated Periodic Syndromes/genetics , Cryopyrin-Associated Periodic Syndromes/prevention & control , Male , Oxaliplatin , Pregabalin/administration & dosage , Pregabalin/therapeutic use , Rats, Wistar
11.
Exp Ther Med ; 10(2): 535-540, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26622350

ABSTRACT

Guillain-Barré syndrome is a type of acute inflammatory neuropathy that causes ataxia and is associated with the IgG anti-GM1 antibody. However, the pathogenic role of the IgG anti-GM1 antibody and calcium channels in neuromuscular junctions (NMJs) remains unclear. Thus, the aim of the present study was to investigate the effects of the IgG anti-GM1 monoclonal antibody (mAb) on spontaneous muscle action potentials (SMAPs), and the effects of calcium channel blockers, in a rat spinal cord-muscle co-culture system. In addition, the binding of IgG anti-GM1 mAb to calcium channels was investigated in the rat hemidiaphragm. The frequency of SMAPs in the innervated muscle cells was acutely inhibited by the IgG anti-GM1 mAb; however, this effect was blocked by the N-type calcium channel blocker, ω-conotoxin GVIA (30 nM). Furthermore, the P/Q-type calcium channel blocker, ω-agatoxin IVA (10 nM), was found to partially block the IgG anti-GM1 mAb-induced inhibitory effect in the spinal cord-muscle co-culture system. Immunohistochemical analysis of the rat hemidiaphragm indicated that IgG anti-GM1 mAb binding overlapped with anti-Cav2.2 (α1B) antibody binding in the nerve terminal. In addition, IgG anti-GM1 mAb binding partially overlapped with anti-Cav2.1 (α1A) antibody binding. Thus, the results demonstrated that the IgG anti-GM1 mAb binds to calcium channels in the nerve terminals of NMJs. Therefore, the inhibitory effect of IgG anti-GM1 mAb on SMAPs may involve N-type and P/Q-type calcium channels in motor nerve terminals at the NMJ.

12.
Phytomedicine ; 21(11): 1458-65, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25022209

ABSTRACT

Yokukansan, a traditional Japanese herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia. Recently, several studies have shown that yokukansan has a neuroprotective effect. The aim of this study was to examine the neuroprotective effect of yokukansan on hippocampal neurons from embryonic mouse brain against the effects of corticosterone, which is considered to be a stress hormone and to be cytotoxic toward neurons. The cell survival rates were measured by the WST-8 assay and LDH assay. Twenty-four hours after treatment with corticosterone, cell numbers were significantly decreased compared with the control or treatment with vehicle in a dose-dependent manner. When cells were treated with 30 µM corticosterone, the decrease in the number of cells was significantly recovered by treatment with yokukansan (100-1,000 µg/ml) in a dose-dependent manner. However, yokukansan did not suppress the decrease in cell numbers that was induced by treatment with 100 µM corticosterone. In the LDH assay, treatment with yokukansan at a high concentration (500-1,000 µg/ml) suppressed the LDH concentration induced by treatment with both 30 µM and 100 µM corticosterone compared to treatment with corticosterone alone, respectively. These results suggest that yokukansan protects against the cytotoxic effect of a low concentration of corticosterone on hippocampal neurons.


Subject(s)
Corticosterone/adverse effects , Drugs, Chinese Herbal/pharmacology , Hippocampus/cytology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Mice, Inbred ICR , Primary Cell Culture
13.
Neurol Sci ; 35(2): 205-13, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23820959

ABSTRACT

Guillain-Barré syndrome, which is a variant of acute inflammatory neuropathy, is associated with anti-GM1 antibodies and causes ataxia. We investigated the effects of IgG anti-GM1 monoclonal antibody (IgG anti-GM1 mAb) on spontaneous muscle action potentials in a rat spinal cord-muscle co-culture system and the localization of IgG anti-GM1 mAb binding in the rat hemi-diaphragm. The frequency of spontaneous muscle action potentials in innervated muscle cells was acutely inhibited by IgG anti-GM1 mAb. When cultures were pretreated with GM2 synthase antisense oligodeoxynucleotide, IgG anti-GM1 mAb failed to inhibit spontaneous muscle action potentials, demonstrating the importance of the GM1 epitope in the action of IgG anti-GM1 mAb. Immunohistochemistry of rat hemi-diaphragm showed that IgG anti-GM1 mAb binding overlapped with neurofilament 200 (NF200) antibodies staining, but not α-bungarotoxin (α-BuTx) staining, demonstrating that IgG anti-GM1 mAb was localized at the presynaptic nerve terminal. IgG anti-GM1 mAb binding overlapped with syntaxin antibody and S-100 antibody in the nerve terminal. After collagenase treatment, IgG anti-GM1 mAb and NF200 antibodies did not show staining, but α-BuTx selectively stained the hemi-diaphragm. IgG anti-GM1 mAb binds to the presynaptic nerve terminal of neuromuscular junctions. Therefore, we suggest that the inhibitory effect of IgG anti-GM1 mAb on spontaneous muscle action potentials is related to the GM1 epitope in presynaptic motor nerve terminals at the NMJs.


Subject(s)
Action Potentials , Antibodies, Monoclonal/immunology , Autoantibodies/immunology , G(M1) Ganglioside/immunology , Immunoglobulin G/immunology , Neuromuscular Junction/physiology , Animals , Cells, Cultured , Collagenases/metabolism , Diaphragm/drug effects , Diaphragm/physiology , In Vitro Techniques , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Neurofilament Proteins/metabolism , Oligodeoxyribonucleotides, Antisense/pharmacology , Presynaptic Terminals/physiology , Qa-SNARE Proteins/metabolism , Rats , Rats, Wistar , S100 Proteins/metabolism , Spinal Cord/physiology
14.
J Pharmacol Sci ; 123(2): 203-6, 2013.
Article in English | MEDLINE | ID: mdl-24096830

ABSTRACT

Lamotrigine (LTG) is an anticonvulsant drug used in the treatment of epilepsy and bipolar disorder and it has been known that LTG targets voltage-dependent sodium channels (VGSCs). In this study, we investigated the effect of LTG on the Nav1.4 Na(+) current using HEK293 cells expressing mouse Nav1.4 VGSCs. By the treatment of LTG, Nav1.4 Na(+) current was inhibited in a dose-dependent manner. Moreover, 100 µM LTG decreased Nav1.4 Na(+) current around 40% and shifted the V1/2 of the inactivation curve to the hyperpolarization side by 20.96 mV. These findings suggest that LTG inhibits Nav1.4 Na(+) current and modifies the kinetics of the inactivated state.


Subject(s)
Anticonvulsants/pharmacology , Triazines/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/drug effects , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Lamotrigine , Membrane Potentials/drug effects , Mice , Patch-Clamp Techniques
15.
Neurochem Res ; 38(10): 2019-27, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23851714

ABSTRACT

The interaction of amyloid ß-proteins (Aßs) with membrane lipids has been postulated as an early event in Aß fibril formation in Alzheimer's disease. We evaluated the effects of several putative bioactive Aßs and gangliosides on neural stem cells (NSCs) isolated from embryonic mouse brains or the subventricular zone of adult mouse brains. Incubation of the isolated NSCs with soluble Aß1-40 alone did not cause any change in the number of NSCs, but soluble Aß1-42 increased their number. Aggregated Aß1-40 and Aß1-42 increased the number of NSCs but soluble and aggregated Aß25-35 decreased the number. Soluble Aß1-40 and Aß1-42 did not affect the number of apoptotic cells but aggregated Aß1-40 and Aß1-42 did. When NSCs were treated with a combination of GM1 or GD3 and soluble Aß1-42, cell proliferation was enhanced, indicating that both GM1 and GD3 as well as Aßs are involved in promoting cell proliferation and survival of NSCs. These observations suggest the potential of beneficial effects of using gangliosides and Aßs for promoting NSC proliferation.


Subject(s)
Amyloid beta-Peptides/pharmacology , G(M1) Ganglioside/pharmacology , Gangliosides/pharmacology , Neural Stem Cells/drug effects , Animals , Cell Proliferation/drug effects , Cells, Cultured , Mice , Peptide Fragments/pharmacology
16.
Biol Pharm Bull ; 36(4): 592-601, 2013.
Article in English | MEDLINE | ID: mdl-23386218

ABSTRACT

Macrophages are white blood cells within tissues that are produced by monocytes and help to protect against infection by bacteria through phagocytosis. Several studies have shown a correlation between the state of depression and abnormalities in the immune response. Corticosterone (CORT), which is often referred to as the stress hormone, is a well-known regulator of peripheral immune responses and also shows anti-inflammatory properties in the body. However, it is still unclear how CORT regulates macrophage function. In this study, we focused on the effects of CORT on the proliferation and survival of macrophage cells using the macrophage cell line RAW264.7. Under treatment with 10 µM CORT for 24 h, the proliferation of RAW264.7 cells decreased to 73.6% of that in the control. Moreover, this inhibition was blocked by treatment with mifepristone, a glucocorticoid receptor (GR) antagonist, but not by spironolactone, a mineralocorticoid receptor (MR) antagonist. In an lactate dehydrogenase (LDH) assay, CORT did not show any cytotoxic effect on RAW264.7 cells. JC-1 cell staining also showed that CORT did not influence mitochondrial dysfunction in RAW264.7 cells. In an investigation of the modulation of a signaling cascade by CORT, treatment with CORT promoted the translocation of GR, but not MR, from the cytosol to the nucleus in RAW264.7 cells. In conclusion, our findings suggest that CORT suppresses the proliferation of RAW264.7 cells by controlling the transcription of a particular gene, which is related to cell proliferation, through the formation of a CORT-GR complex.


Subject(s)
Corticosterone/pharmacology , Macrophages/drug effects , Receptors, Glucocorticoid/metabolism , Animals , Cell Line , Cell Proliferation/drug effects , Hormone Antagonists/pharmacology , Macrophages/cytology , Macrophages/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mifepristone/pharmacology , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Mineralocorticoid/metabolism , Spironolactone/pharmacology
17.
Life Sci ; 91(15-16): 761-70, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-22940619

ABSTRACT

AIMS: Corticosterone (CORT), which is often referred to as the stress hormone, is a well-known regulator of peripheral immune responses and also shows anti-inflammatory properties in the brain. Microglia play a key role in immune response and inflammation in the brain. However, it is still unclear how CORT affects microglia. In this study, we focused on the effects of CORT on the proliferation and survival of microglia using mouse microglia cell line BV2. MAIN METHODS: We used WST-8 and LDH (lactate dehydrogenase) assays to check the effects of CORT for the proliferation and survival in BV2 microglia cells. We also analyzed the expression pattern of proteins which related to CORT signal cascades using western blotting analysis. KEY FINDINGS: Under treatment with 0.1, 1 and 10µM CORT for 24h, the BV2 proliferation rate decreased to 83, 77 and 70% of that in the control. Moreover, this inhibition was blocked by treatment with mifepristone, a glucocorticoid receptor (GR) antagonist, but not by spironolactone, a mineralocorticoid receptor (MR) antagonist. Moreover, an LDH assay showed that CORT was dose-dependently cytotoxic toward BV2 microglia cells and this cytotoxicity was partially abolished by treatment with mifepristone. In addition, treatment with CORT resulted in the translocation of GR, but not MR, from the cytosol to the nucleus. SIGNIFICANCE: Our findings suggested that CORT suppresses the proliferation of BV2 microglia cells accompanied with a cytotoxic effect that is induced by the formation of a CORT-GR complex.


Subject(s)
Corticosterone/metabolism , Microglia/cytology , Microglia/metabolism , Receptors, Glucocorticoid/immunology , Receptors, Mineralocorticoid/metabolism , Animals , Anti-Inflammatory Agents/adverse effects , Cell Line , Cell Proliferation/drug effects , L-Lactate Dehydrogenase/immunology , Membrane Potential, Mitochondrial , Mice , Microglia/drug effects , Mifepristone/pharmacology , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Glucocorticoid/antagonists & inhibitors , Spironolactone/pharmacology
18.
J Biol Chem ; 285(48): 37293-301, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-20855890

ABSTRACT

Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into neuronal and glial cells. NSCs are the source for neurogenesis during central nervous system development from fetal and adult stages. Although the human natural killer-1 (HNK-1) carbohydrate epitope is expressed predominantly in the nervous system and involved in intercellular adhesion, cell migration, and synaptic plasticity, the expression patterns and functional roles of HNK-1-containing glycoconjugates in NSCs have not been fully recognized. We found that HNK-1 was expressed in embryonic mouse NSCs and that this expression was lost during the process of differentiation. Based on proteomics analysis, it was revealed that the HNK-1 epitopes were almost exclusively displayed on an extracellular matrix protein, tenascin-C (TNC), in the mouse embryonic NSCs. Furthermore, the HNK-1 epitope was found to be present only on the largest isoform of the TNC molecules. In addition, the expression of HNK-1 was dependent on expression of the largest TNC variant but not by enzymes involved in the biosynthesis of HNK-1. By knocking down HNK-1 sulfotransferase or TNC by small interfering RNA, we further demonstrated that HNK-1 on TNC was involved in the proliferation of NSCs via modulation of the expression level of the epidermal growth factor receptor. Our finding provides insights into the function of HNK-1 carbohydrate epitopes in NSCs to maintain stemness during neural development.


Subject(s)
CD57 Antigens/metabolism , Cell Proliferation , Epitopes/metabolism , Neural Stem Cells/cytology , RNA Splicing , Tenascin/chemistry , Tenascin/metabolism , Amino Acid Sequence , Animals , CD57 Antigens/chemistry , CD57 Antigens/genetics , Cell Differentiation , Cells, Cultured , Epitopes/chemistry , Epitopes/genetics , Mice , Mice, Inbred ICR , Mice, Knockout , Molecular Sequence Data , Neural Stem Cells/chemistry , Neural Stem Cells/metabolism , Protein Structure, Tertiary , Sequence Alignment , Tenascin/genetics
19.
J Biol Chem ; 285(24): 18443-51, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20371608

ABSTRACT

In neural stem cells, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promote cell proliferation and self-renewal. In the bFGF- and EGF-responsive neural stem cells, beta1-integrin also plays important roles in crucial cellular processes, including proliferation, migration, and apoptosis. The cross-talk of the signaling pathways mediated by these growth factors and beta1-integrin, however, has not been fully elucidated. Here we report a novel molecular mechanism through which bFGF or EGF promotes the proliferation of mouse neuroepithelial cells (NECs). In the NECs, total beta1-integrin expression levels and proliferation were dose-dependently increased by bFGF but not by EGF. EGF rather than bFGF strongly induced the increase of beta1-integrin localization on the NEC surface. bFGF- and EGF-induced beta1-integrin up-regulation and proliferation were inhibited after treatment with a mitogen-activated protein kinase kinase inhibitor, U0126, which indicates the dependence on the mitogen-activated protein kinase pathway. Involvement of beta1-integrin in bFGF- and EGF-induced proliferation was confirmed by the finding that NEC proliferation and adhesion to fibronectin-coated dishes were inhibited by knockdown of beta1-integrin using small interfering RNA. On the other hand, apoptosis was induced in NECs treated with RGD peptide, a small beta1-integrin inhibitor peptide with the Arg-Gly-Asp motif, but it was independent of beta1-integrin expression levels. Those results suggest that regulation of beta1-integrin expression/localization is involved in cellular processes, such as proliferation, induced by bFGF and EGF in NECs. The mechanism underlying the proliferation through beta1-integrin would not be expected to be completely identical, however, for bFGF and EGF.


Subject(s)
Epidermal Growth Factor/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation , Integrin beta1/metabolism , Neurons/metabolism , Amino Acid Motifs , Animals , Biotinylation , Cell Proliferation , Cells, Cultured , Fibroblast Growth Factors/metabolism , Immunohistochemistry/methods , Mice , Models, Biological , RNA Interference
20.
Glycobiology ; 20(1): 78-86, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19776077

ABSTRACT

Neural stem cells (NSCs) are undifferentiated neural cells characterized by their high proliferative potential and the capacity for self-renewal with retention of multipotency. Over the past two decades, there has been a huge effort to identify NSCs morphologically, genetically, and molecular biologically. It is still controversial, however, what bona fide NSCs are. To define and characterize NSCs more systematically, it is crucial to explore novel cell-surface marker molecules of NSCs. In this study, we focused on GD3, a b-series ganglioside that is enriched in the immature brain and the subventricular zone (SVZ) of the postnatal and adult brain, and evaluated the usefulness of GD3 as a cell-surface biomarker for identifying NSCs. We demonstrated that GD3 was expressed in more than 80% of NSCs prepared from embryonic, postnatal, and adult mouse brain tissue by the neurosphere culture method. The percentage of GD3-expressing NSCs in neurospheres was nearly the same as it was in neurospheres derived from embryonic, postnatal, and adult brains but decreased drastically to about 40% after differentiation. GD3(+) cells isolated from embryonic mouse striata, postnatal, and adult mouse SVZs by fluorescence-activated cell sorting with an R24 anti-GD3 monoclonal antibody efficiently generated neurospheres compared with GD3(-) cells. These cells possessed multipotency to differentiate into neurons, astrocytes, and oligodendrocytes. These data indicate that GD3 is a unique and powerful cell-surface biomarker to identify and isolate NSCs.


Subject(s)
Biomarkers/chemistry , Gangliosides/chemistry , Neurons/cytology , Stem Cells/cytology , Animals , Astrocytes/cytology , Cell Differentiation , Cell Membrane/metabolism , Cell Separation , Flow Cytometry , Gene Expression Regulation , Glycosphingolipids/chemistry , Mice , Mice, Inbred ICR , Neurons/metabolism , Oligodendroglia/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...