Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biosens Bioelectron ; 213: 114453, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35728364

ABSTRACT

Non-invasive measurement of volatile organic compounds (VOCs) emitted from living organisms is a powerful technique for diagnosing health conditions or diseases in humans. Bio-based gas sensors are suitable for the sensitive and selective measurement of a target VOC from a complex mixture of VOCs. Conventional bio-based sensors are normally prepared as wet-type probes to maintain proteins such as enzymes in a stable state, resulting in limitations in the commercialization of sensors, their operating environment, and performance. In this study, we present an enzyme-based fluorometric electrospun fiber sensor (eFES) mesh as a gas-phase biosensor in dry form. The eFES mesh targeting ethanol was fabricated by simple one-step electrospinning of polyvinyl alcohol with an alcohol dehydrogenase and an oxidized form of nicotinamide adenine dinucleotide. The enzyme embedded in the eFES mesh worked actively in a dry state without pretreatment. Substrate specificity was also maintained, and the sensor responded well to ethanol with a sufficient dynamic range. Adjustment of the pH and coenzyme quantity in the eFES mesh also affected enzyme activity. The dry-form biosensor-eFES mesh-will open a new direction for gas-phase biosensors because of its remarkable performance and simple fabrication, which is advantageous for commercialization.


Subject(s)
Biosensing Techniques , Volatile Organic Compounds , Alcohol Dehydrogenase/chemistry , Biosensing Techniques/methods , Breath Tests/methods , Ethanol/metabolism , Gases , Humans , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL