Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 253: 104125, 2023 02.
Article in English | MEDLINE | ID: mdl-36587422

ABSTRACT

People living in the Great Rift Valley in East Africa suffer from fluorosis resulting from their consumption of groundwater. This paper shows that geogenic fluoride contamination in a natural water system has changed in the last two decades in the Mt. Meru slope area of northern Tanzania based on water quality, dating of the residence time, and stable isotopes of groundwater. The results demonstrate that 1) the average recharge altitude of groundwater with a high geogenic fluoride concentration is estimated to range from 1900 m to 3000 m on the southern slope of Mt. Meru, and the fluoride concentration tends to increase with an increase in the recharge altitude, 2) the fluoride concentration increases with increasing groundwater residence time for groundwater with a residence time of 20 years or longer, suggesting that water-rock interaction processes (weathering, dissolution, and ion exchange), which depend on the contact time between the volcanic aquifer and groundwater, have predominated for approximately 20 years or longer, and 3) the mixing of aerobic young water and old groundwater has been active for approximately 20 years, and the fluoride concentration is increasing in some shallower well waters. The mixing of fluoride-contaminated groundwater with aerobic water infiltrating the aquifer through pumping groundwater in the last two decades may increase the spread of groundwater contaminated with fluoride due to increased water demand caused by rapid population growth, and urbanization, industrial growth, and the expansion of irrigated agriculture.


Subject(s)
Groundwater , Water Pollutants, Chemical , Humans , Fluorides/analysis , Tanzania , Water Pollutants, Chemical/analysis , Water Quality , Environmental Monitoring
2.
ACS Sens ; 6(1): 259-266, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33415970

ABSTRACT

The prolonged exposure to fluorides results in the development of several diseases, from dental fluorosis to crippling deformities of the spine and major joints. The population exposed to high fluoride concentration is located in developing countries where the assurance of water quality is difficult to perform. Addressing this challenge, an open-source system for the determination of fluoride in natural water was developed using the equilibrium between the red Fe-SCN complex and the colorless Fe-F. The reaction develops in cotton substrates to reduce the manipulation of liquid reagents and reduce the errors by nontrained operators. The system was optimized by image analysis and implemented in an open-source Arduino-based device and data was acquired through the serial port of a cell phone, which is also used as a power source, avoiding the use of a battery and reducing production costs. The device showed a detection limit of 0.7 mg L-1 and a linear range of up to 8 mg L-1. This extended detection limit makes the device useful for the application in regions where the fluoride concentration in drinking water is far higher than the United Nations limit (1.5 mg L-1), e.g., the United Republic of Tanzania, where the upper limit of F- was extended to 4 mg L-1 or in USA, where the Environmental Protection Agency established the Maximum Contaminant Level of F- in drinking water at 4 mg L-1. The method was tested with natural waters from the Arusha region in the northeast of Tanzania and validated against the results from ion chromatography showing a good correlation. The developed device exhibits chemical stability of 5 days, allowing it to be manufactured and distributed in local areas and, also, modified according to the requirements of the water composition due to Industry 4.0 concepts used in the design.


Subject(s)
Drinking Water , Fluorosis, Dental , Fluorides/analysis , Humans , Tanzania , United States
3.
Sci Rep ; 7(1): 12578, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974754

ABSTRACT

Spatial variations in tritium concentrations in groundwater were identified in the southern part of the coastal region in Fukushima Prefecture, Japan. Higher tritium concentrations were measured at wells near the Fukushima Daiichi Nuclear Power Station (F1NPS). Mean tritium concentrations in precipitation in the 5 weeks after the F1NPS accident were estimated to be 433 and 139 TU at a distance of 25 and 50 km, respectively, from the F1NPS. The elevations of tritium concentrations in groundwater were calculated using a simple mixing model of the precipitation and groundwater. By assuming that these precipitation was mixed into groundwater with a background tritium concentration in a hypothetical well, concentrations of 13 and 7 TU at distances of 25 and 50 km from the F1NPS, respectively, were obtained. The calculated concentrations are consistent with those measured at the studied wells. Therefore, the spatial variation in tritium concentrations in groundwater was probably caused by precipitation with high tritium concentrations as a result of the F1NPS accident. However, the highest estimated tritium concentrations in precipitation for the study site were much lower than the WHO limits for drinking water, and the concentrations decreased to almost background level at the wells by mixing with groundwater.


Subject(s)
Cesium Radioisotopes/isolation & purification , Radiation Monitoring , Tritium/isolation & purification , Water Pollutants, Radioactive/isolation & purification , Cesium Radioisotopes/chemistry , Cesium Radioisotopes/toxicity , Drinking Water/chemistry , Fukushima Nuclear Accident , Groundwater/chemistry , Humans , Tritium/chemistry , Tritium/toxicity , Water Pollutants, Radioactive/chemistry , Water Pollutants, Radioactive/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...