Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Glycobiology ; 34(7)2024 May 26.
Article in English | MEDLINE | ID: mdl-38785323

ABSTRACT

Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.


Subject(s)
Colorectal Neoplasms , Gangliosides , Sialyltransferases , Sialyltransferases/metabolism , Sialyltransferases/genetics , Gangliosides/metabolism , Gangliosides/immunology , Animals , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Mice , Cell Line, Tumor , Humans , beta-Galactoside alpha-2,3-Sialyltransferase
2.
Sci Rep ; 13(1): 12740, 2023 08 06.
Article in English | MEDLINE | ID: mdl-37544935

ABSTRACT

Atherosclerosis is a major cause of cerebral and cardiovascular diseases. Intravascular plaques, a well-known pathological finding of atherosclerosis, have a necrotic core composed of macrophages and dead cells. Intraplaque macrophages, which are classified into various subtypes, play key roles in maintenance of normal cellular microenvironment. Excessive uptake of oxidized low-density lipoprotein causes conversion of macrophages to foam cells, and consequent progression/exacerbation of atherosclerosis. G-protein-coupled receptor 55 (GPR55) signaling has been reported to associate with atherosclerosis progression. We demonstrated recently that lysophosphatidylglucoside (lysoPtdGlc) is a specific ligand of GPR55, although in general physiological ligands of GPR55 are poorly understood. Phosphatidylglucoside is expressed on human monocytes and can be converted to lysoPtdGlc. In the present study, we examined possible involvement of lysoPtdGlc/GPR55 signaling in foam cell formation. In monocyte-derived M2c macrophages, lysoPtdGlc/GPR55 signaling inhibited translocation of ATP binding cassette subfamily A member 1 to plasma membrane, and cholesterol efflux. Such inhibitory effect was reversed by GPR55 antagonist ML193. LysoPtdGlc/GPR55 signaling in M2c macrophages was involved in excessive lipid accumulation, thereby promoting foam cell formation. Our findings suggest that lysoPtdGlc/GPR55 signaling is a potential therapeutic target for inhibition of atherosclerosis progression.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Foam Cells/metabolism , Cholesterol/metabolism , Macrophages/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Atherosclerosis/pathology , Plaque, Atherosclerotic/pathology , ATP Binding Cassette Transporter 1/metabolism , Receptors, Cannabinoid/metabolism
3.
Tuberculosis (Edinb) ; 143: 102391, 2023 12.
Article in English | MEDLINE | ID: mdl-37574397

ABSTRACT

Mycobacteria enter host phagocytes, such as macrophages by binding to several receptors on phagocytes. Several mycobacterial species, including Mycobacterium tuberculosis have evolved systems to evade host bactericidal pathways. Lipoarabinomannan (LAM) is an essential mycobacterial molecule for both binding to phagocytes and escaping from bactericidal pathways. Integrin CD11b plays critical roles as a phagocytic receptor and contributes to host defense by mediating both nonopsonic and opsonic phagocytosis. However, the mechanisms by which CD11b-mediated phagocytosis associates with LAM and drives the phagocytic process of mycobacteria remain to be fully elucidated. We recently identified TMDU3 as anti-LAM IgM antibody against the mannan core of LAM. The present study investigated the roles of CD11b and TMDU3 in macrophage phagocytosis of mycobacteria and subsequent bactericidal lysosomal fusion to phagosomes. CD11b knockout cells generated by a CRISPR/Cas9 system showed significant attenuation of the ability to phagocytose non-opsonized mycobacteria and LAM-conjugated beads. Moreover, recombinant human CD11b protein was found to bind to LAM. TMDU3 markedly inhibited macrophage phagocytosis of non-opsonized mycobacteria. This antibody slightly increased the phagocytosis of mycobacteria under opsonized conditions, whereas it significantly enhanced CD11b-mediated bactericidal functions. Taken together, these results show a novel phylactic role of anti-LAM IgM during mycobacterial infection in macrophages.


Subject(s)
Mycobacterium Infections , Mycobacterium tuberculosis , Humans , Mannans/metabolism , Macrophages/microbiology , Phagocytosis , Immunoglobulin M , Lipopolysaccharides
4.
Cells ; 12(2)2023 01 14.
Article in English | MEDLINE | ID: mdl-36672256

ABSTRACT

Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/ß-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein ß-catenin is a key player in the Wnt/ß-catenin signaling pathway. A great deal of evidence shows that the Wnt/ß-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3ß phosphorylation, resulting in the release of unphosphorylated ß-catenin from the ß-catenin destruction complex and its accumulation in the cytoplasm. The accumulated ß-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/ß-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/ß-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Mice , Animals , beta Catenin/metabolism , Dimethyl Sulfoxide/pharmacology , Wnt Proteins/metabolism , Cell Differentiation , Hematopoiesis
5.
Methods Mol Biol ; 2613: 203-214, 2023.
Article in English | MEDLINE | ID: mdl-36587081

ABSTRACT

Glycosphingolipids (GSLs) form GSL-enriched microdomains, together with sphingomyelin (SM), cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins, and membrane-associated signaling molecules. GSL-enriched microdomains mediate a variety of physiological functions, including innate immune responses. Innate immune responses are initialized by the binding of host pattern recognition receptors (PRRs) to pathogen-associated molecular patterns (PAMPs) expressed in microorganisms. This binding triggers phagocytosis and leads to the formation of a phagosome-containing microorganism and the subsequent lysosomal fusion with a phagosome. To detect the molecular interaction between GSL-enriched microdomains, sphingolipids, and signaling molecules from the uptake of the microorganism until the phagosome-containing microorganism fuses with lysosomes, biochemical and microscopic approaches are indispensable. Here, we describe the detailed methods for isolating phagosomes and observing the molecular interaction using a superresolution microscope. Our methodology provides a strategy for exploring the molecular interaction between the host and pathogen and for developing new treatment approaches.


Subject(s)
Immunity, Innate , Sphingolipids , Phagocytosis , Glycosphingolipids/metabolism , Phagosomes/metabolism , Glycosylphosphatidylinositols
6.
Pediatr Infect Dis J ; 41(9): e358-e364, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35703299

ABSTRACT

BACKGROUND: Spread of variants of concerns (VOCs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an increase in children with coronavirus disease 2019 (COVID-19). In February 2021, clusters of the Alpha variant of SARS-CoV-2 started to be reported in Niigata, Japan, including a large nursery cluster. We investigated the transmission routes and household secondary attack rates (SARs) in this cluster. METHODS: Epidemiologic data related to a nursery cluster in Niigata, Japan, particularly child-origin and adult-origin SARs, were analyzed. VOCs were confirmed by whole-genome sequencing of virus from patients. RESULTS: In total, 42 persons (22 children and 20 adults) in the cluster were infected with the Alpha variant. In the nursery, 13 of 81 children (16.0%) and 4 of 24 teachers (16.7%) were infected. SARS-CoV-2 later spread to 25 persons (10 children and 15 adults) outside the nursery. Child-origin and adult-origin household SARs were 27.7% (13/47) and 47.0% (8/17) ( P = 0.11), respectively, which were higher than rates attributable to non-VOCs in previous studies. CONCLUSIONS: As compared with non-VOCs, the Alpha variant of SARS-CoV-2 exhibited high transmissibility among children and adults and may pose a high risk for household secondary transmission from SARS-CoV-2-infected children. Increased transmissibility of current or future VOCs could lead to greater transmission from children to adults or other children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Family Characteristics , Humans , Japan/epidemiology , SARS-CoV-2/genetics
7.
Sci Rep ; 12(1): 5181, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410994

ABSTRACT

The prevalence of and mortality from non-tuberculous mycobacteria (NTM) infections have been steadily increasing worldwide. Most NTM infections are caused by Mycobacterium avium-intracellulare complex (MAC). MAC can escape from killing by neutrophils, which are professional phagocytes. However, the involvement of neutrophils in the pathogenesis of MAC infection is poorly understood. The present study assessed the roles of neutrophil extracellular trap (NET) formation in neutrophil defense mechanisms against infection with MAC strains, including M. avium isolated from patients with severe or mild lung tissue destruction. Although all MAC induced NET formation, non-pathogenic mycobacteria (M. gordonae and M. smegmatis) slightly but not significantly induced NET formation. Peptidylarginine deiminase 4 (PAD4) inhibitor reduced MAC-induced NET formation but did not affect MAC escape from neutrophils. PAD4 inhibition attenuated the MAC-induced matrix metalloproteinase (MMP)-8 and 9 release to the levels of MMPs from non-pathogenic mycobacteria. MAC also induced interleukin (IL)-8 release by neutrophils, a process independent of MAC-induced NET formation. Taken together, these findings suggest that MAC induce NET formation, IL-8 release and NETs-dependent release of MMP-8 and -9 from neutrophils, leading to neutrophil accumulation and further inflammation, thereby enhancing the progression of infection in the lungs.


Subject(s)
Extracellular Traps , Mycobacterium avium-intracellulare Infection , Humans , Matrix Metalloproteinases , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection/microbiology , Nontuberculous Mycobacteria
8.
Glycoconj J ; 39(2): 239-246, 2022 04.
Article in English | MEDLINE | ID: mdl-35377103

ABSTRACT

The innate immune system of mammalian cells is the first line of defense against pathogenic microorganisms. Phagocytes, which play the central role in this system, engulf microorganisms by a mechanism that involves pattern recognition receptors on their own surface and pathogen-associated molecular patterns (PAMPs) expressed by the microorganism. Components of PAMPs include glycans (polysaccharides) and glycoconjugates (carbohydrates covalently linked to other biological molecules). Pathogenic microorganisms display specific binding affinity to various types of glycosphingolipids (sphingosine-containing glycolipids; GSLs), and GSLs are involved in host-pathogen interactions. We observed that lactosylceramide (LacCer), a neutral GSL, binds directly to certain pathogen-specific molecules (e.g., Candida albicans-derived ß-glucans, mycobacterial lipoarabinomannan) via carbohydrate-carbohydrate interaction. LacCer is expressed highly on human neutrophils, and forms membrane microdomains. Such LacCer-enriched microdomains mediate several important neutrophil functions, including chemotaxis, phagocytosis, and superoxide generation. Human neutrophils phagocytose pathogenic mycobacteria (including Mycobacterium tuberculosis) through carbohydrate-carbohydrate interaction between LacCer on their own surface and mannose-capped lipoarabinomannan on the bacterium. During recognition of pathogen-specific glycans, direct association of LacCer-containing C24 fatty acid chain with Lyn (a Src family kinase) is necessary for signal transduction from the neutrophil exterior to interior. Pathogenic mycobacteria utilize a similar interaction to avoid killing by neutrophils. We describe here the mechanisms whereby LacCer mediates neutrophil immune systems via carbohydrate-carbohydrate interaction.


Subject(s)
Mycobacterium , Neutrophils , Animals , Antigens, CD/metabolism , Glycosphingolipids/metabolism , Humans , Lactosylceramides/metabolism , Mammals/metabolism , Membrane Microdomains/metabolism , Mycobacterium/metabolism , Neutrophils/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism
9.
Tuberculosis (Edinb) ; 132: 102165, 2022 01.
Article in English | MEDLINE | ID: mdl-35045376

ABSTRACT

Mycobacterium tuberculosis (MTB) and M. avium-intracellulare complex (MAC) enter host phagocytes, such as neutrophils through lipoarabinomannan (LAM) binding to pattern-recognition receptors, inducing innate immune responses including phagocytosis. Phagocytosis of mycobacteria by human neutrophils depends on the binding of α(1 â†’ 2)-monomannose branching α(1 â†’ 6)-mannan core of LAM/lipomannan (LM), a common component among mycobacterial species, to lactosylceramide (LacCer)-enriched lipid microdomains. We investigated the binding specificities of several anti-LAM antibodies (Abs) to LAMs/LM and found anti-LAM monoclonal IgMs TMDU3 and LA066 were directed against mannan core. Each IgM showed different binding specificity to mannan core. Confocal and stimulated emission depletion microscopy revealed TMDU3 and LA066 strongly bind to MTB and MAC, respectively. Flow cytometric analysis revealed human neutrophils do not express Dectin-2, DC-SIGN or mannose receptor. Furthermore, neutrophil phagocytosis of mycobacteria was markedly inhibited by TMDU3 and LA066, respectively. Similarly, treatment of each mAb with neutrophils reduced the numbers of intracellular MAC. Together, our results suggest that the interaction of LacCer-enriched lipid microdomains with mannan core and its blocking are therapeutic or diagnostic targets for both TB and non-tuberculous mycobacteria infection.


Subject(s)
Lipopolysaccharides/immunology , Mannans/metabolism , Mycobacterium/metabolism , Neutrophils/immunology , Phagocytosis/immunology , Adult , Humans , Lipopolysaccharides/analysis , Male , Middle Aged , Mycobacterium/immunology , Neutrophils/metabolism , Phagocytosis/genetics
10.
Pediatr Infect Dis J ; 40(11): e418-e423, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34561385

ABSTRACT

BACKGROUND: School closures are a subject of debate during the present coronavirus disease 2019 (COVID-19) pandemic. Because children are not the main driver of COVID-19 transmission in the community, school education must be prioritized in conjunction with appropriate infection prevention and control measures, as determined by local COVID-19 incidence. METHODS: We investigated the causes and transmission routes of a primary school cluster of COVID-19 that occurred during November and December 2020 in Niigata, Japan. RESULTS: In the cluster, the virus spread among teachers, then from teachers to students, and then to their family members. This primary school cluster comprised 26 infected patients and included teachers (13/33, 39%), students (9/211, 4%), and family members (4/65, 6%). The secondary attack rate from the 3 index teachers to the remaining 30 teachers was 33%; however, the rate to students was only 4%. Factors contributing to cluster formation include the fact that 2 of the index teachers continued working while symptomatic and that the environment and infection prevention measures in the teachers' room were inadequate. CONCLUSIONS: To open schools safely and without interruption, adequate measures to prevent COVID-19 infection in schools should be emphasized not only for children but also for teachers and their environment.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , SARS-CoV-2 , School Teachers , Schools , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/transmission , Child , Female , Humans , Incidence , Japan/epidemiology , Male , Middle Aged , Public Health Surveillance , Young Adult
11.
Int J Mol Sci ; 22(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34502474

ABSTRACT

Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.


Subject(s)
Glycosphingolipids/immunology , Membrane Microdomains/immunology , Phagocytes/immunology , Signal Transduction/immunology , Animals , Antigen Presentation/immunology , Apoptosis/immunology , Humans , Phagocytosis/immunology
12.
Biochem Biophys Res Commun ; 569: 86-92, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34237432

ABSTRACT

Neutrophils undergo spontaneous apoptosis within 24-48 h after leaving bone marrow. Apoptotic neutrophils are subsequently phagocytosed and cleared by macrophages, thereby maintaining neutrophil homeostasis. Previous studies have demonstrated involvement of lysophosphatidylglucoside (lysoPtdGlc), a degradation product of PtdGlc, in modality-specific repulsive guidance of spinal sensory axons, via its specific receptor GPR55. In the present study, using human monocytic cell line THP-1 as a model, we demonstrated that lysoPtdGlc induces monocyte/macrophage migration with typical bell-haped curve and a peak at concentration 10-9 M. Lysophosphatidylinositol (lysoPtdIns), a known GPR55 ligand, induced migration at higher concentration (10-7 M). LysoPtdGlc-treated cells had a polarized shape, whereas lysoPtdIns-treated cells had a spherical shape. In EZ-TAXIScan (chemotaxis) assay, lysoPtdGlc induced chemotactic migration activity of THP-1 cells, while lysoPtdIns induced random migration activity. GPR55 antagonist ML193 inhibited lysoPtdGlc-induced THP-1 cell migration, whereas lysoPtdIns-induced migration was inhibited by CB2-receptor inverse agonist. SiRNA experiments showed that GPR55 mediated lysoPtdGlc-induced migration, while lysoPtdIns-induced migration was mediated by CB2 receptor. Our findings, taken together, suggest that lysoPtdGlc functions as a chemotactic molecule for human monocytes/macrophages via GPR55 receptor, while lysoPtdIns induces random migration activity via CB2 receptor.


Subject(s)
Cell Movement/drug effects , Glucosides/pharmacology , Lysophospholipids/chemistry , Macrophages/drug effects , Monocytes/drug effects , Receptors, Cannabinoid/metabolism , Blotting, Western , Cell Movement/genetics , Chemotaxis/drug effects , Chemotaxis/physiology , Glucosides/chemistry , Humans , Lysophospholipids/pharmacology , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , RNA Interference , Receptors, Cannabinoid/genetics , THP-1 Cells
13.
J Pestic Sci ; 46(2): 125-142, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34135675

ABSTRACT

Herein, we provide a brief overview of the synthesis and applications of trifluoromethylpyridine (TFMP) and its derivatives in the agrochemical and pharmaceutical industries. Currently, the major use of TFMP derivatives is in the protection of crops from pests. Fluazifop-butyl was the first TFMP derivative introduced to the agrochemical market, and since then, more than 20 new TFMP-containing agrochemicals have acquired ISO common names. Several TFMP derivatives are also used in the pharmaceutical and veterinary industries; five pharmaceutical and two veterinary products containing the TFMP moiety have been granted market approval, and many candidates are currently undergoing clinical trials. The biological activities of TFMP derivatives are thought to be due to the combination of the unique physicochemical properties of the fluorine atom and the unique characteristics of the pyridine moiety. It is expected that many novel applications of TFMP will be discovered in the future.

14.
Mediators Inflamm ; 2019: 1919538, 2019.
Article in English | MEDLINE | ID: mdl-31007601

ABSTRACT

Macrophages are key immune system cells involved in inflammatory processes. Classically activated (M1) macrophages are characterized by strong antimicrobicidal properties, whereas alternatively activated (M2) macrophages are involved in wound healing. Severe inflammation can induce postoperative complications during the perioperative period. Invasive surgical procedures induce polarization to M1 macrophages and associated complications. As perioperative management, it is an important strategy to regulate polarization and functions of macrophages during inflammatory processes. Although propofol has been found to exhibit anti-inflammatory activities in monocytes and macrophages, it is unclear whether propofol regulates the functions of M1 and M2 macrophages during inflammatory processes. This study therefore investigated the effects of propofol on human macrophage polarization. During M1 polarization, propofol suppressed the production of IL-6 and IL-1ß but did not affect TNF-α production. In contrast, propofol did not affect the gene expression of M2 markers, such as IL-10, TGF-ß, and CD206, during M2 polarization. Propofol was similar to the GABAA agonist muscimol in inducing nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and inhibiting IL-6 and IL-1ß, but not TNF-α, production. Knockdown of Nrf2 using siRNA significantly reduced the effect of propofol on IL-6 and IL-1ß production. These results suggest that propofol prevents inflammatory responses during polarization of human M1 macrophages by suppressing the expression of IL-6 and IL-1ß through the GABAA receptor and the Nrf2-mediated signal transduction pathway.


Subject(s)
Cytokines/metabolism , Macrophages/drug effects , Macrophages/metabolism , NF-E2-Related Factor 2/metabolism , Cells, Cultured , Humans , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lectins, C-Type/metabolism , Mannose Receptor , Mannose-Binding Lectins/metabolism , Muscimol/pharmacology , NF-E2-Related Factor 2/genetics , Propofol/pharmacology , Receptors, Cell Surface/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
FEBS Lett ; 592(23): 3921-3942, 2018 12.
Article in English | MEDLINE | ID: mdl-30320884

ABSTRACT

Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived ß-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.


Subject(s)
Fungi/immunology , Glycosphingolipids/immunology , Immune System/immunology , Membrane Microdomains/immunology , Mycobacterium/immunology , Animals , Fungi/metabolism , Fungi/physiology , Glycosphingolipids/metabolism , Humans , Immune System/metabolism , Immune System/microbiology , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Membrane Microdomains/metabolism , Membrane Microdomains/microbiology , Mycobacterium/metabolism , Mycobacterium/physiology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , beta-Glucans/immunology , beta-Glucans/metabolism
16.
Biosci Biotechnol Biochem ; 81(3): 608-613, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28051913

ABSTRACT

Flavobacterium psychrophilum (F. psychrophilum) is the causative agent of bacterial cold-water disease (BCWD) that occurs in ayu Plecoglossus altivelis. Formalin-killed cell of F. psychrophilum has long been studied as an immersion vaccine for BCWD. In this study, we explored the possibility of F. psychrophilum collagenase (fpcol) for use as the immersion vaccine. BCWD convalescent ayu sera contained specific IgM antibodies against somatic F. psychrophilum and fpcol, meaning that fpcol is a promising antigen for the vaccine development. The recombinant fpcol was successfully expressed in Escherichia coli and Brevibacillus chosinensis (B. chosinensis). The culture supernatant of the B. chosinensis was used as an immersion vaccine solution. The vaccinated ayu were then challenged by soaking into F. psychrophilum culture. In two experimental groups, the relative percentages of survivals were 63 and 38%, respectively, suggesting that fpcol is promising as the immersion vaccine for ayu-BCWD.


Subject(s)
Bacterial Vaccines/pharmacology , Fish Diseases/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacterium/immunology , Animals , Aquaculture , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Brevibacillus/genetics , Collagenases/genetics , Collagenases/immunology , Escherichia coli/genetics , Fish Diseases/prevention & control , Flavobacteriaceae Infections/prevention & control , Flavobacterium/pathogenicity , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/pharmacology
17.
Sci Signal ; 9(449): ra101, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27729551

ABSTRACT

Pathogenic mycobacteria use virulence factors, including mannose-capped lipoarabinomannan (ManLAM), to survive in host phagocytic cells, such as neutrophils. We assessed the roles of lactosylceramide (LacCer, CDw17)-enriched lipid rafts in the phagocytosis of mycobacteria by human neutrophils and in the intracellular fate of phagocytosed mycobacteria. We showed that the association of the Src family kinase (SFK) Lyn with C24 fatty acid chain-containing LacCer was essential for the phagocytosis of mycobacteria by neutrophils. Assays with LacCer-containing liposomes, LacCer-coated plastic plates, and LAM-coated beads demonstrated that the phagocytosis of mycobacteria was mediated through the binding of LacCer to LAM. Both ManLAM from pathogenic species and phosphoinositol-capped LAM (PILAM) from nonpathogenic Mycobacterium smegmatis bound equivalently to LacCer to stimulate phagocytosis. However, PILAM from an M. smegmatis α1,2-mannosyltransferase deletion mutant (ΔMSMEG_4247), lacking the α1,2-monomannose side branches of the LAM mannan core, did not bind to LacCer or induce phagocytosis. An anti-LacCer antibody immunoprecipitated the SFK Hck from the phagosomes of neutrophils that internalized nonpathogenic mycobacteria but not from those that internalized pathogenic mycobacteria. Furthermore, knockdown of Hck by short inhibitory RNA abolished the fusion of lysosomes with phagosomes containing nonpathogenic mycobacteria. Further analysis showed that ManLAM, but not PILAM, inhibited the association of Hck with LacCer-enriched lipid rafts in phagosomal membranes, effectively blocking phagolysosome formation. Together, these findings suggest that pathogenic mycobacteria use ManLAM not only for binding to LacCer-enriched lipid rafts and entering neutrophils but also for disrupting signaling through Hck-coupled, LacCer-enriched lipid rafts and preventing phagolysosome formation.


Subject(s)
Antigens, CD/immunology , Lactosylceramides/immunology , Lipopolysaccharides/immunology , Membrane Microdomains/immunology , Mycobacterium tuberculosis/immunology , Neutrophils/immunology , Phagocytosis/immunology , Humans
18.
Ann Intensive Care ; 6(1): 64, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27422255

ABSTRACT

BACKGROUND: The activation of polymorphonuclear neutrophils (PMNs) plays an important role in sepsis. Previously, we showed that ATP release and feedback via ATP receptors are essential for PMN activation; however, the dynamics remain poorly understood. Two new fluorescent chemosensors, PMAP-1 and MitoAP-1, were developed to detect ATP in the plasma membrane and mitochondria of living cells, respectively. In this study, we aimed to evaluate ATP localization using these chemosensors in PMNs of sepsis patients. METHODS: Live PMNs isolated from 16 sepsis patients and healthy controls (HCs) were stained with these chemosensors and observed by confocal microscopy, and their mean fluorescence intensities (MFIs) were evaluated using flow cytometry. CD11b expression in PMNs was also evaluated. RESULTS: The MFIs of PMAP-1 and MitoAP-1 and CD11b expression in PMNs from sepsis patients on days 0-1 were significantly higher than those of HCs. The MFI of PMAP-1 and CD11b expression on days 3-4 decreased significantly compared to those observed at days 0-1, whereas MitoAP-1 MFI was maintained at a high level. The PMAP-1 MFI was significantly positively correlated with CD11b expression, white blood cell counts, neutrophil counts, and C-reactive protein levels in patients. CONCLUSIONS: The higher MFIs of PMAP-1 and MitoAP-1 in sepsis patients suggest a pivotal role of ATP for PMN activation. The temporal difference in ATP levels suggests that ATP plays different roles in the mitochondria and on the cell surface. These data should contribute to the understanding of the dynamics of ATP in PMNs and help to develop a novel therapy for sepsis.

19.
Glia ; 64(11): 1938-61, 2016 11.
Article in English | MEDLINE | ID: mdl-27464357

ABSTRACT

To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross-reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50- to 70-kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys(170) . In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin-like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full-length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin-like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double-immunοstaining with 9F5 antibody and anti-Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938-1961.


Subject(s)
Antibodies, Monoclonal/metabolism , Brain/cytology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Microglia/enzymology , Microglia/immunology , Animals , Animals, Newborn , Antigens/metabolism , Antigens, CD/metabolism , COS Cells/drug effects , COS Cells/metabolism , Calcium-Binding Proteins/metabolism , Cells, Cultured , Chlorocebus aethiops , Ectodysplasins/metabolism , Embryo, Mammalian , Eye/embryology , Eye/growth & development , Eye/metabolism , Female , Furin/genetics , Furin/pharmacology , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/physiology , Interleukin-12/pharmacology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , Microfilament Proteins/metabolism , Microglia/classification , Microglia/drug effects , Proteoglycans/metabolism , Rats , Rats, Wistar
20.
Biosci Biotechnol Biochem ; 80(1): 135-44, 2016.
Article in English | MEDLINE | ID: mdl-26327168

ABSTRACT

The collagenase activity and the fpcol gene were examined in Flavobacterium psychrophilum isolates from cold-water disease (CWD)-affected ayu, Plecoglossus altivelis. Collagenase expression was closely related to the accumulated mortality of CWD-affected ayu. RT-qPCR and bacterial challenge experiments showed that F. psychrophilum ayu isolate WA-1 expressed the fpcol gene more actively and was more virulent than ayu isolate WA-2. The amago (Oncorhynchus masou) isolate WB-1, which possesses a pseudo-fpcol gene, was not harmful to ayu. Hitherto, the well-studied metalloproteases Fpp1 and Fpp2 have been considered virulence factors. However, the most virulent isolate against ayu (WA-1) showed no Fpp activity because of a deletion mutation or an insertion of a transposon in the fpp genes. The less virulent WA-2 isolate showed only Fpp1 activity. Taken together, these results suggest that collagenolytic activity, but not Fpp activity, is related to the virulence of F. psychrophilum isolates in CWD-affected ayu.


Subject(s)
Bacterial Proteins/genetics , Collagenases/genetics , Flavobacteriaceae Infections/veterinary , Flavobacterium/genetics , Flavobacterium/pathogenicity , Osmeriformes/microbiology , Amino Acid Sequence , Animals , Bacterial Proteins/metabolism , Base Sequence , Cold Temperature , Collagenases/metabolism , DNA Transposable Elements , Fish Diseases/microbiology , Flavobacteriaceae Infections/microbiology , Flavobacterium/enzymology , Flavobacterium/isolation & purification , Gene Expression , Metalloproteases/genetics , Metalloproteases/metabolism , Molecular Sequence Data , Mutation , Oncorhynchus/microbiology , Pseudogenes , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...