Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(1): 108625, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38188528

ABSTRACT

The plant hormone (3R, 7S)-jasmonoyl-L-isoleucine ((3R, 7S)-JA-Ile) is perceived by the COI1-JAZ co-receptor in Arabidopsis thaliana, leading to the activation of gene expression for plant defense responses, growth, development, and other processes. Therefore, understanding the interaction between the COI1-JAZ co-receptor and its ligands is essential for the development of COI1-JAZ agonists and antagonists as potent chemical tools for regulating (3R, 7S)-JA-Ile signaling. This study demonstrated that COI1-JAZ has two independent modes of ligand perception using a differential scanning fluorimetry (DSF) assay. (3R, 7S)-JA-Ile is perceived through a one-step model in which (3R, 7S)-JA-Ile causes protein-protein interaction between COI1 and JAZ. In contrast, coronatine (COR), a mimic of (3R, 7S)-JA-Ile, is perceived through a two-step model in which COR is first perceived by COI1 and then recruits JAZ to form the COI1-COR-JAZ complex. Our results demonstrate two distinct modes of action of molecular glues causing protein-protein interactions.

2.
Commun Biol ; 6(1): 320, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966228

ABSTRACT

Severe genetic redundancy is particularly clear in gene families encoding plant hormone receptors, each subtype sharing redundant and specific functions. Genetic redundancy of receptor family members represents a major challenge for the functional dissection of each receptor subtype. A paradigmatic example is the perception of the hormone (+)-7-iso-jasmonoyl-L-isoleucine, perceived by several COI1-JAZ complexes; the specific role of each receptor subtype still remains elusive. Subtype-selective agonists of the receptor are valuable tools for analyzing the responses regulated by individual receptor subtypes. We constructed a stereoisomer library consisting of all stereochemical isomers of coronatine (COR), a mimic of the plant hormone (+)-7-iso-jasmonoyl-L-isoleucine, to identify subtype-selective agonists for COI1-JAZ co-receptors in Arabidopsis thaliana and Solanum lycopersicum. An agonist selective for the Arabidopsis COI1-JAZ9 co-receptor efficiently revealed that JAZ9 is not involved in most of the gene downregulation caused by COR, and the degradation of JAZ9-induced defense without inhibiting growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Isoleucine/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Repressor Proteins/metabolism , Stereoisomerism , Arabidopsis/genetics , Arabidopsis/metabolism
3.
Sci Rep ; 11(1): 13612, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193940

ABSTRACT

(+)-7-iso-Jasmonoyl-L-isoleucine (JA-Ile) is a lipid-derived phytohormone implicated in plant development, reproduction, and defense in response to pathogens and herbivorous insects. All these effects are instigated by the perception of JA-Ile by the COI1-JAZ co-receptor in the plant body, which in Arabidopsis thaliana is profoundly influenced by the short JAZ degron sequence (V/L)P(Q/I)AR(R/K) of the JAZ protein. Here, we report that SlJAZ-SlCOI1, the COI1-JAZ co-receptor found in the tomato plant, relies on the extended JAZ degron sequence (V/L)P(Q/I)AR(R/K)XSLX instead of the canonical JAZ degron. This finding illuminates our understanding of the mechanism of ligand perception by JA-Ile in this plant, and will inform both efforts to improve it by genetic modification of the SlCOI1-SlJAZ co-receptor, and the development of the synthetic agonists/antagonists.


Subject(s)
Cyclopentanes , Isoleucine/analogs & derivatives , Plant Proteins , Repressor Proteins , Solanum lycopersicum , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Cyclopentanes/metabolism , Isoleucine/genetics , Isoleucine/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
4.
Chirality ; 32(4): 423-430, 2020 04.
Article in English | MEDLINE | ID: mdl-31999008

ABSTRACT

A facile, efficient, and scalable synthesis of optically pure coronafacic acid by resolution of racemic coronafacic acid obtained using an improved version of Watson's method has been developed. By optimizing the boron-mediated aldol reaction of Watson, we were able to prepare 2.1 g of racemic coronafacic acid. This was coupled with (S)-4-isopropyl-2-oxazolidinone to give a mixture of diastereomeric coronafacyl oxazolidinones, which were readily separable by silica-gel column chromatography to give 630 mg of optically pure (+)-coronafacic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...