Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Glob Chall ; 7(8): 2300112, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37635706

ABSTRACT

Owing to the increasing global demand for carbon resources, pressure on finite materials, including petroleum and inorganic resources, is expected to increase in the future. Efficient utilization of waste resources has become crucial for sustainable resource acquisition for creating the next generation of industries. Rice husks, which are abundant worldwide as agricultural waste, are a rich carbon source with a high silica content and have the potential to be an effective raw material for energy-related and environmental purification materials such as battery, catalyst, and adsorbent. Converting these into valuable resources often requires separation and carbonization; however, these processes incur significant energy losses, which may offset the benefits of using biomass resources in the process steps. This review summarizes and discusses the high value of RHs, which are abundant as agricultural waste. Technologies for separating and converting RHs into valuable resources by hydrothermal carbonization are summarized based on the energy efficiency of the process.

2.
J Biosci Bioeng ; 135(6): 480-486, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37088674

ABSTRACT

The present study aimed to evaluate a semi-wet biocathode composed of oak white charcoal and agarose gel as an alternative to the standard carbon felt biocathodes used in microbial fuel cells (MFCs). The MFC containing the oak white charcoal cathode (Oak-MFC) recorded a higher current value than that of the MFC containing a carbon felt cathode (CF-MFC). The Oak-MFC produced approximately 4.0-fold more electrons in the external circuit and 1.7-fold more methane (CH4) than the CF-MFC. A real-time PCR targeting mcrA showed that the number of methanogens adhering to the oak white charcoal cathode was approximately 15-fold that adhering to the carbon felt cathode. These results suggest that the methanogens attached to the cathode of both MFCs received electrons and CH4 was produced from carbon dioxide (CO2). Furthermore, Oak-MFC performed better than CF-MFC, thereby suggesting that oak white charcoal bound by agarose gel can be used as an alternative methanogen cathode. The propionic acid degradation rate of Oak-MFC was faster than that of CF-MFC suggesting that the cathodic reaction may affect the anodic reaction. The use of oak-derived electrode as a methanogen cathode also could contribute to sustainable forest management and promote regular thinning of oak trees. Further, its use will enable carbon fixation and efficient energy conversion from CO2 to CH4, thus contributing to sustainable energy use.


Subject(s)
Bioelectric Energy Sources , Quercus , Electricity , Charcoal , Carbon Dioxide , Carbon Fiber , Sepharose , Electrodes
3.
Chem Commun (Camb) ; 59(21): 3079-3082, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36807657

ABSTRACT

Herein, we report the impregnation of chloranil into activated carbon micropores using scCO2. The sample prepared under 105 °C and 15 MPa showed a specific capacity of 81 mAh gelectrode-1, except for the electric double layer capacity at 1 A gelectrode-Polytetrafluoroethylene (PTFE)-1. Additionally, approximately 90% of the capacity was retained even at 4 A gelectrode-PTFE-1.

4.
Sci Rep ; 12(1): 3915, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35273235

ABSTRACT

Inexpensive, high-performing, and environmentally friendly energy storage devices are required for smart grids that efficiently utilize renewable energy. Energy storage devices consisting of organic active materials are promising because organic materials, especially quinones, are ubiquitous and usually do not require harsh conditions for synthesis, releasing less CO2 during mass production. Although fundamental research-scale aqueous quinone-based organic supercapacitors have shown excellent energy storage performance, no practical research has been conducted. In this study, we aimed to develop a practical-scale aqueous-quinone-based organic supercapacitor. By connecting 12 cells of size 10 cm × 10 cm × 0.5 cm each in series, we fabricated a high-voltage (> 6 V) aqueous organic supercapacitor that can charge a smartphone at a 1 C rate. This is the first step in commercializing aqueous organic supercapacitors that could solve environmental problems, such as high CO2 emissions, air pollution by toxic metals, and limited electricity generation by renewable resources.

5.
Philos Trans A Math Phys Eng Sci ; 379(2209): 20200348, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510926

ABSTRACT

There is an urgent need to develop renewable sources of energy and use existing resources in an efficient manner. In this study, in order to improve the utilization of unused biomass and develop green processes and sustainable technologies for energy production and storage, unused Douglas fir sawdust (SD) was transformed into catalysts for the oxygen reduction reaction. Fe and N were doped into SD during hydrothermal carbonization, and the N- and Fe-doped wood-derived carbon (Fe/N/SD) was carbonized in a nitrogen atmosphere. After the catalyst had been calcined at 800°C, its showed the highest current density (-5.86 mAcm-2 at 0.5 V versus reversible hydrogen electrode or RHE) and Eonset value (0.913 V versus RHE). Furthermore, its current density was higher than that of Pt/C (20 wt% Pt) (-5.66 mA cm-2 @0.5 V versus RHE). Finally, after 50 000 s, the current density of sample Fe/N/SD (2 : 10 : 10) remained at 79.3% of the initial value. Thus, the synthesized catalysts, which can be produced readily at a low cost, are suitable for use in various types of energy generation and storage devices, such as fuel cells and air batteries. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

6.
ChemSusChem ; 13(21): 5762-5768, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32940949

ABSTRACT

Hard carbon (HC) is the most promising candidate for sodium-ion battery anode materials. Several material properties such as intensity ratio of the Raman spectrum, lateral size of HC crystallite (La ), and interlayer distance (d002 ) have been discussed as factors affecting anode performance. However, these factors do not reflect the bulk property of the Na+ intercalation reaction directly, since Raman analysis has high surface sensitivity and La and d002 provide only one-dimensional crystalline information. Herein, it was proposed that the crystallite interlayer area (Ai ) defined using La , d002 , and stacking height (Lc ) governs Na+ intercalation behavior of various HCs. It was revealed that various wood-derived HCs exhibited the similar total capacity of approximately 250 mAh g-1 , whereas the Na+ intercalation capacity (Ci ) was proportional to Ai with the correlation coefficient of R2 =0.94. The evaluation factor of Ai was also adaptable to previous reports and strongly correlated with their Ci , indicating that Ai is more widely adaptable than the conventional evaluation methods.

7.
Dalton Trans ; 49(27): 9377-9384, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32588861

ABSTRACT

Molybdenum disulfide (MoS2), an attractive material for energy conversion devices, is known to exhibit varying properties depending on the number of layers and the phase structure. In this study, we developed a supercritical hydrothermal process that allows the controllable synthesis of MoS2 nanosheets with various structural and morphological characteristics. Detailed characterization of the synthesized materials confirmed that the number of layers in the MoS2 nanosheets could be controlled by varying the organic reducing agent under supercritical hydrothermal conditions. In addition, the MoS2 phase could be controlled kinetically by varying the reaction time with ascorbic acid as the reducing agent. Because water and elemental sulfur were respectively used as the solvent and sulfur source and as the reaction time was minimal, the developed hydrothermal process represents a facile processing method for different types of MoS2 nanosheets.

9.
Nanoscale Adv ; 1(9): 3383-3387, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133561

ABSTRACT

This study presents a simple one-pot synthesis method to achieve few-layered and defective Mo(S,Se)2 and (Mo,W)S2 by using supercritical water with organic reducing agents from simple and less-toxic precursors. This synthesis process is expected to be suitable for preparing other various kinds of TMD solid solutions.

10.
RSC Adv ; 8(58): 33391-33397, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-35548164

ABSTRACT

Structural defects, including point defects, dislocation and planar defects, significantly affect the physical and chemical properties of low-dimensional materials, such as layered compounds. In particular, inversion domain boundary is an intrinsic defect surrounded by a 60° grain boundary, which significantly influences electronic transport properties. We study atomic structures of the inversion domain grain boundaries (IDBs) in layered transition metal dichalcogenides (MoSe2 and MoS2) obtained by an exfoliation method, based on the aberration-corrected scanning transmission electron microscopy observation and density functional theory (DFT) calculation. The atomic-scale observation shows that the grain boundaries consist of two different types of 4-fold ring point shared and 8-fold ring edge shared chains. The results of DFT calculations indicate that the inversion domain grain boundary behaves as a metallic one-dimensional chain embedded in the semiconducting MoSe2 matrix with the occurrence of a new state within the band gap.

11.
Langmuir ; 33(22): 5406-5411, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28509556

ABSTRACT

Top-down graphene production via exfoliation from graphite produces a mass of graphene with structural variation in terms of the number of layers, sheet size, edge type, and defect density. All of these characteristics affect its electronic structure. To develop useful applications of graphene, structural separation of graphene is necessary. In this study, we investigate the adsorption behavior of different types of graphene fragments using a multicolumn gel chromatography system with a view to developing an efficient method for separating high-quality graphene. The graphene was dispersed in an aqueous sodium dodecyl sulfate (SDS) surfactant solution and flown through allyl-dextran-based gel columns connected in series. In the chromatographic operation, we observed that the small-sized or oxidized graphene fragments tended to bind to the gel and the relatively large-sized graphene with a low oxygen content eluted from the gel column. In this system, the adsorbed SDS molecules on the graphitic surface prevented graphitic materials from binding to the gel and the oxygen functional groups on the graphene oxide or at the abundant edge of small-sized graphene hindered SDS adsorption. We hypothesize that the reduced SDS adsorption density results in the preferential adsorption of small-sized or oxidized graphene fragments on the gel. This type of chromatographic separation is a cost-effective and scalable method for sorting nanomaterials. The structural separation of graphene based on the adsorption priority found in this study will improve the quality of graphene nanosheets on an industrial scale.

12.
ACS Omega ; 2(5): 2360-2367, 2017 May 31.
Article in English | MEDLINE | ID: mdl-31457585

ABSTRACT

The ultrathin two-dimensional nanosheets of layered transition-metal dichalcogenides (TMDs) have attracted great interest as an important class of materials for fundamental research and technological applications. Solution-phase processes are highly desirable to produce a large amount of TMD nanosheets for applications in energy conversion and energy storage such as catalysis, electronics, rechargeable batteries, and capacitors. Here, we report a rapid exfoliation by supercritical fluid processing for the production of MoS2 and MoSe2 nanosheets. Atomic-resolution high-angle annular dark-field imaging reveals high-quality exfoliated MoS2 and MoSe2 nanosheets with hexagonal structures, which retain their 2H stacking sequence. The obtained nanosheets were tested for their electrochemical performance in a hybrid Mg-Li-ion battery as a proof of functionality. The MoS2 and MoSe2 nanosheets exhibited the specific capacities of 81 and 55 mA h g-1, respectively, at a current rate of 20 mA g-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...