Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 83(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28130303

ABSTRACT

We have developed butanol-producing consolidated bioprocessing from cellulosic substrates through coculture of cellulolytic clostridia and butanol-producing Clostridium saccharoperbutylacetonicum strain N1-4. However, the butanol fermentation by strain N1-4 (which has an optimal growth temperature of 30°C) is sensitive to the higher cultivation temperature of 37°C; the nature of this deleterious effect remains unclear. Comparison of the intracellular metabolites of strain N1-4 cultivated at 30°C and 37°C revealed decreased levels of multiple primary metabolites (notably including nucleic acids and cofactors) during growth at the higher temperature. Supplementation of the culture medium with 250 mg/liter adenine enhanced both cell growth (with the optical density at 600 nm increasing from 4.3 to 10.2) and butanol production (increasing from 3.9 g/liter to 9.6 g/liter) at 37°C, compared to those obtained without adenine supplementation, such that the supplemented 37°C culture exhibited growth and butanol production approaching those observed at 30°C in the absence of adenine supplementation. These improved properties were based on the maintenance of cell viability. We further showed that adenine supplementation enhanced cell viability during growth at 37°C by maintaining ATP levels and inhibiting spore formation. This work represents the first demonstration (to our knowledge) of the importance of adenine-related metabolism for clostridial butanol production, suggesting a new means of enhancing target pathways based on metabolite levels.IMPORTANCE Metabolomic analysis revealed decreased levels of multiple primary metabolites during growth at 37°C, compared to 30°C, in C. saccharoperbutylacetonicum strain N1-4. We found that adenine supplementation restored the cell growth and butanol production of strain N1-4 at 37°C. The effects of adenine supplementation reflected the maintenance of cell viability originating from the maintenance of ATP levels and the inhibition of spore formation. Thus, our metabolomic analysis identified the depleted metabolites that were required to maintain cell viability. Our strategy, which is expected to be applicable to a wide range of organisms, permits the identification of the limiting metabolic pathway, which can serve as a new target for molecular breeding. The other novel finding of this work is that adenine supplementation inhibits clostridial spore formation. The mechanism linking spore formation and metabolomic status in butanol-producing clostridia is expected to be the focus of further research.


Subject(s)
Adenine/pharmacology , Butanols/metabolism , Clostridium/drug effects , Clostridium/metabolism , Microbial Viability/drug effects , 1-Butanol/metabolism , Acetone/metabolism , Adenosine Triphosphate , Clostridium/growth & development , Culture Media/chemistry , Ethanol/metabolism , Fermentation , Glucose/metabolism , Metabolic Networks and Pathways/drug effects , Metabolomics , Spores, Bacterial/drug effects , Temperature
2.
Bioresour Technol ; 186: 325-328, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25818258

ABSTRACT

The co-culture of cellulolytic Clostridium thermocellum NBRC 103400 and butanol-producing Clostridium saccharoperbutylacetonicum strain N1-4 produced 5.5 g/L of butanol from 40 g/L of delignified rice straw pretreated with 1% (wt/vol) NaOH. The addition of cellulase (100 U/g biomass) in a co-culture system significantly increased butanol production to 6.9 g/L using 40 g/L of delignified rice straw. Compared to the control, this increase in butanol production was attributed to the enhancement of exoglucanase activity on lignocellulose degradation in experimental samples. The results showed that the co-culture system in conjunction with enhanced exoglucanase activity resulted in cost-effective butanol production from delignified rice straw.


Subject(s)
Butanols/isolation & purification , Clostridium/metabolism , Oryza/metabolism , Plant Stems/metabolism , Alkalies/pharmacology , Clostridium/growth & development , Lignin/metabolism , Oryza/drug effects , Plant Stems/drug effects , Species Specificity
3.
J Biosci Bioeng ; 117(1): 39-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23867095

ABSTRACT

We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+).


Subject(s)
2,4-Dinitrophenol/pharmacology , Acetic Acid/metabolism , Drug Resistance, Fungal , Malates/metabolism , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism , Cytosol/metabolism , Ethanol/metabolism , Mitochondria/drug effects , Mutagenesis , NAD/metabolism , Pyruvic Acid/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/isolation & purification
4.
J Biosci Bioeng ; 115(2): 173-5, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22999358

ABSTRACT

When Clostridium thermocellum and Clostridium saccharoperbutylacetonicum strain N1-4 were co-cultured hydrogen production decreased and butanol was selectively produced with extremely low level of acetone. Since the high butanol production correlates with low hydrogen production, the molecular selection of hydrogenase gene activity is expected to yield strains exhibiting a higher butanol ratio.


Subject(s)
Butanols/metabolism , Clostridium thermocellum/metabolism , Clostridium/cytology , Clostridium/metabolism , Hydrogen/metabolism , Acetone/metabolism , Clostridium thermocellum/cytology , Hydrogenase/metabolism
5.
J Biosci Bioeng ; 114(3): 281-5, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22575438

ABSTRACT

We characterized a high malic acid production mechanism in sake yeast strain No. 28. No considerable differences in the activity of the enzymes that were involved in malic acid synthesis were observed between strain No. 28 and its parent strain, K1001. However, compared with strain K1001, which actively took up rhodamine 123 during staining, the cells of strain No. 28 were only lightly stained, even when cultured in high glucose concentrations. In addition, malic acid production by the respiratory-deficient strain of K1001 was 2.5-fold higher than that of the wild-type K1001 and wild-type No. 28. The findings of this study demonstrated that the high malic acid production by strain No. 28 is attributed to the suppression of mitochondrial activity.


Subject(s)
Malates/metabolism , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Cell Respiration/drug effects , Extracellular Space/chemistry , Extracellular Space/drug effects , Extracellular Space/metabolism , Fermentation/drug effects , Glucose/metabolism , Glucose/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology
6.
DNA Res ; 18(6): 423-34, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21900213

ABSTRACT

The term 'sake yeast' is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.


Subject(s)
Genome, Fungal , Saccharomyces cerevisiae/genetics , Chromosome Inversion , Chromosomes, Fungal , Genes, Fungal , Molecular Sequence Data , Open Reading Frames , Phylogeny , Saccharomyces cerevisiae/classification , Sequence Analysis, DNA
7.
Appl Environ Microbiol ; 77(18): 6470-5, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21764954

ABSTRACT

We investigated butanol production from crystalline cellulose by cocultured cellulolytic Clostridium thermocellum and the butanol-producing strain, Clostridium saccharoperbutylacetonicum (strain N1-4). Butanol was produced from Avicel cellulose after it was incubated with C. thermocellum for at least 24 h at 60°C before the addition of strain N1-4. Butanol produced by strain N1-4 on 4% Avicel cellulose peaked (7.9 g/liter) after 9 days of incubation at 30°C, and acetone was undetectable in this coculture system. Less butanol was produced by cocultured Clostridium acetobutylicum and Clostridium beijerinckii than by strain N1-4, indicating that strain N1-4 was the optimal strain for producing butanol from crystalline cellulose in this coculture system.


Subject(s)
Butanols/metabolism , Cellulose/metabolism , Clostridium/metabolism , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...