Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
Exp Brain Res ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856929

ABSTRACT

Rolling walkers are common walking aids for individuals with poor physical fitness or balance impairments. There is no doubt that rolling walkers are useful in assisting locomotion. On the other hand, it is arguable that walking with rolling walkers (WW) is effective for maintaining or restoring the nervous systems that are recruited during conventional walking (CW). This is because the differences and similarities of the neural control of these locomotion forms remain unknown. The purpose of the present study was to compare the neural control of WW and CW from the perspective of a split-belt adaptation paradigm and reveal how the adaptations that take place in WW and CW would affect each other. The anterior component of the ground reaction (braking) forces was measured during and after walking on a split-belt treadmill by 10 healthy subjects, and differences in the peak braking forces between the left and right sides were calculated as the index of the split-belt adaptation (the degree of asymmetry). The results demonstrated that (1) WW enabled subjects to respond to the split-belt condition immediately after its start as compared to CW; (2) the asymmetry movement pattern acquired by the split-belt adaptation in one gait mode (i.e., CW or WW) was less transferable to the other gait mode; (3) the asymmetry movement pattern acquired by the split-belt adaptation in CW was not completely washed out by subsequent execution in WW and vice versa. The results suggest unique control of WW and the specificity of neural control between WW and CW; use of the walkers is not necessarily appropriate as training for CW from the perspective of neural control.

2.
Physiol Rep ; 12(9): e16039, 2024 May.
Article in English | MEDLINE | ID: mdl-38740563

ABSTRACT

Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.


Subject(s)
Spinal Cord Stimulation , Thigh , Humans , Male , Spinal Cord Stimulation/methods , Adult , Thigh/physiology , Thigh/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Muscle Contraction/physiology , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , H-Reflex/physiology , Femoral Nerve/physiology , Neural Inhibition/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/innervation , Hamstring Muscles/physiology , Electromyography
3.
MethodsX ; 12: 102766, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38808097

ABSTRACT

Electroencephalogram (EEG) electrode digitization is crucial for accurate EEG source estimation, and several commercial systems are available for this purpose. The present study aimed to evaluate the digitizing accuracy of electromagnetic and optical systems. Additionally, we introduced a novel rotation method for the electromagnetic system and compared its accuracy with the conventional method of electromagnetic and optical systems. In the conventional method, the operator moves around a stationary participant to digitize, while the participant does not move their head or body. In contrast, in our proposed rotation method with an electromagnetic system, the operator rotates the participant sitting on a swivel chair to digitize in a consistent position. We showed high localization accuracy in both the optical and electromagnetic systems, with an average localization error of less than 3.6 mm. Comparisons of the digitization methods revealed that the electromagnetic system demonstrates superior digitizing accuracy compared to the optical system. Notably, the proposed rotational method is the most accurate among the three methods, which can be attributed to the consistent positioning of EEG electrode digitization within the electromagnetic field. Considering the affordability of the electromagnetic system, our findings provide valuable insights for researchers aiming for precise EEG source estimation.•The study compares the accuracy of electromagnetic and optical systems for EEG electrode digitization, introducing a novel rotation method for improved consistency and precision.•The electromagnetic system, especially with the proposed rotation method, achieves superior digitizing accuracy over the optical system.•Highlighting the cost-effectiveness and precision of the electromagnetic system with the rotation method, this research offers significant insights for achieving precise EEG source estimation.

4.
PLoS One ; 19(4): e0297540, 2024.
Article in English | MEDLINE | ID: mdl-38635774

ABSTRACT

Emotion affects postural control during quiet standing. Emotional states can be defined as two-dimensional models comprising valence (pleasant/unpleasant) and arousal (aroused/calm). Most previous studies have investigated the effects of valence on postural control without considering arousal. In addition, studies have focused on the center of pressure (COP) trajectory to examine emotional effects on the quiet standing control; however, the relationship between neuromuscular mechanisms and the emotionally affected quiet standing control is largely unknown. This study aimed to investigate the effects of arousal and valence on the COP trajectory and ankle muscle activity during quiet standing. Twenty-two participants were instructed to stand on a force platform and look at affective pictures for 72 seconds. The tasks were repeated six times, according to the picture conditions composed of arousal (High and Low) and valence (Pleasant, Neutral, and Unpleasant). During the task, the COP, electromyogram (EMG) of the tibialis anterior and soleus muscles, and electrocardiogram (ECG) were recorded. The heart rate calculated from the ECG was significantly affected by valence; the value was lower in Unpleasant than that in Neutral and Pleasant. The 95% confidence ellipse area and standard deviation of COP in the anterior-posterior direction were lower, and the mean power frequency of COP in the anterior-posterior direction was higher in Unpleasant than in Pleasant. Although the mean velocity of the COP in the medio-lateral direction was significantly lower in Unpleasant than in Pleasant, the effect was observed only when arousal was low. Although the EMG variables were not significantly affected by emotional conditions, some EMG variables were significantly correlated with the COP variables that were affected by emotional conditions. Therefore, ankle muscle activity may be partially associated with postural changes triggered by emotional intervention. In conclusion, both valence and arousal affect the COP variables, and ankle muscle activity may be partially associated with these COP changes.


Subject(s)
Ankle , Emotions , Humans , Ankle/physiology , Emotions/physiology , Lower Extremity , Muscle, Skeletal/physiology , Postural Balance/physiology , Arousal/physiology
5.
Cureus ; 16(2): e54649, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523944

ABSTRACT

Background Identifying altered trunk control is critical for treating extension-related low back pain (ERLBP), a common subgroup classified by clinical manifestations. The changed coordination of trunk muscles within this group during particular trunk tasks is still not clearly understood. Objectives The objective of this study is to investigate trunk muscle coordination during 11 trunk movement and stability tasks in individuals with ERLBP compared to non-low back pain (LBP) participants. Methods Thirteen individuals with ERLBP and non-LBP performed 11 trunk movement and stability tasks. We recorded the electromyographic activities of six back and abdominal muscles bilaterally. Trunk muscle coordination was assessed using the non-negative matrix factorization (NMF) method to identify trunk muscle synergies. Results The number of synergies in the ERLBP group during the cross-extension and backward bend tasks was significantly higher than in the non-LBP group (p<0.05). The cluster analysis identified the two trunk synergies for each task with strikingly similar muscle activation patterns between groups. In contrast, the ERLBP group exhibited additional trunk muscle synergies that were not identified in the non-LBP group. The number of synergies in the other tasks did not differ between groups (p>0.05). Conclusion Individuals with ERLBP presented directionally specific alterations in trunk muscle synergies that were considered as increased coactivations of multiple trunk muscles. These altered patterns may contribute to the excessive stabilization of and the high frequency of hyperextension in the spine associated with the development and persistence of ERLBP.

6.
Neurosci Lett ; 825: 137685, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38367797

ABSTRACT

First-person shooting (FPS) games are among the most famous video games worldwide. However, cortical activities in environments related to real FPS games have not been studied. This study aimed to determine differences in cortical activity between low- and high-skilled FPS game players using 160-channel electroencephalography. Nine high-skilled FPS game players (official ranks: above the top 10%) and eight low-skilled FPS game players (official ranks: lower than the top 20%) were recruited for the experiment. The task was set for five different conditions using the AimLab program, which was used for the FPS game players' training. Additionally, we recorded the brain activity in the resting condition before and after the task, in which the participants closed their eyes and relaxed. The reaction time and accuracy (the number of hit-and-miss targets) were calculated to evaluate the task performance. The results showed that high-skilled FPS game players have fast reaction times and high accuracy during tasks. High-skilled FPS game players had higher cortical activity in the frontal cortex than low-skilled FPS game players during each task. In low-skilled players, cortical activity level and performance level were associated. These results suggest that high cortical activity levels were critical to achieving high performance in FPS games.


Subject(s)
Video Games , Humans , Frontal Lobe , Rest , Spectrum Analysis , Electroencephalography
7.
iScience ; 27(3): 109099, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38414854

ABSTRACT

Fear memories enhance survival especially when the memories guide defensive movements to minimize harm. Accordingly, fear memories and body movements have tight relationships in animals: Fear memory acquisition results in adapting reactive defense movements, while training active defense movements reduces fear memory. However, evidence in humans is scarce because their movements are typically suppressed in experiments. Here, we tracked adult participants' body motions while they underwent ecologically valid fear conditioning in a 3D virtual space. First, with body motion tracking, we revealed that distinct spatiotemporal body movement patterns emerge through fear conditioning. Second, subsequent training to actively avoid threats with naturalistic defensive actions led to a long-term (24 h) reduction of physiological and embodied conditioned responses, while extinction or vicarious training only transiently reduced the responses. Together, our results highlight the role of body movements in human fear memory and its intervention.

8.
PLoS One ; 19(1): e0288770, 2024.
Article in English | MEDLINE | ID: mdl-38165975

ABSTRACT

This study investigated the specific gaze control ability of expert players and low-skill players of League of Legends (LoL). Eleven expert and nine low-skill players were divided according to their official ranking. Then, the gaze movement of each participant when performing each task (e.g., easy task and moderate task) while competing against a computer artificial intelligence system was recorded. Experts were found to have a significantly wide horizontal gaze distribution. Additionally, experts had a consistently short gaze fixation duration during the moderate task. These results suggest that a wide horizontal gaze distribution allows experts to obtain information from a wider area. Additionally, the consistently short fixation duration of the experts indicated that they need only a short period to assess information, which is advantageous because large amounts of information need to be processed within a limited time while playing. This specific gaze control ability could be an important factor that contributes to the superior performance of expert LoL players.


Subject(s)
Artificial Intelligence , Fixation, Ocular , Humans , Movement
9.
Neurosci Lett ; 818: 137551, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37926294

ABSTRACT

Motor imagery (MI) is used for rehabilitation and sports training. Previous studies focusing on the upper limb have investigated the effects of MI on corticospinal excitability in the muscles involved in the imagined movement (i.e., the agonist muscles). The present study focused on several lower-limb movements and investigated the influences of MI on corticospinal excitability in the lower limb muscles. Twelve healthy individuals (ten male and two female individuals) participated in this study. Motor-evoked potentials (MEP) from the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and soleus (SOL) muscles were elicited through transcranial magnetic stimulation (TMS) to the primary motor cortex during MI of knee extension, knee flexion, ankle dorsiflexion, and ankle plantarflexion and at rest. The results showed that the RF MEPs were significantly increased during MI in knee extension, ankle dorsiflexion, and ankle plantarflexion but not in knee flexion, compared with those at rest. The TA MEPs were significantly increased during MI in knee extension and foot dorsiflexion, while MEPs were not significantly different during MI in knee flexion and foot dorsiflexion than those at rest. For the BF and SOL muscles, there was no significant MEP modulation in either MI. These results demonstrated that corticospinal excitability of the RF and TA muscles was facilitated during MI of movements in which they are active and during MI of lower-limb movements in which they are not involved. On the contrary, corticospinal excitability of the BF and SOL muscles was not facilitated by MI of lower-limb movements. These results suggest that facilitation of corticospinal excitability depends on the muscle and the type of lower-limb MI.


Subject(s)
Lower Extremity , Pyramidal Tracts , Humans , Male , Female , Pyramidal Tracts/physiology , Electromyography , Muscle, Skeletal/physiology , Ankle/physiology , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology
10.
Eur J Oral Sci ; 132(2): e12968, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135670

ABSTRACT

The objective of this study was to clarify whether there are sex-specific differences in salivary α-amylase and immunoglobulin A responses following acute endurance exercise in adolescent males and females with equivalent cardiorespiratory fitness levels. Twenty-six aerobically trained adolescent males and females with similar training status were enrolled in this study. Each individual executed a 1-h prolonged cycling exercise corresponding to a constant power output at 65% of peak oxygen uptake. Unstimulated whole salivary samples were taken with the passive drooling method at the 10-min period before and after exercise for the determination of salivary responses [α-amylase, immunoglobulin A, total protein and flow rate]. Salivary α-amylase activity, immunoglobulin A concentration and total protein concentration were significantly augmented immediately after acute endurance exercise. Regarding sex differences, only the salivary flow rate was significantly lower in females than in males. The findings of the present study imply that adolescent males and females appear to have similar salivary responses after acute endurance exercise, as represented by salivary α-amylase activity and immunoglobulin A concentration in connection with total protein concentration and salivary flow rate, when they are matched for peak oxygen uptake relative to fat-free body mass.


Subject(s)
Salivary alpha-Amylases , Humans , Male , Female , Adolescent , Salivary alpha-Amylases/metabolism , Saliva/metabolism , Exercise/physiology , Immunoglobulin A , Oxygen
12.
J Neuroeng Rehabil ; 20(1): 69, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37259142

ABSTRACT

BACKGROUND: Chronic low back pain (CLBP) is a highly prevalent disease with poorly understood underlying mechanisms. In particular, altered trunk muscle coordination in response to specific trunk tasks remains largely unknown. METHODS: We investigated the muscle synergies during 11 trunk movement and stability tasks in 15 healthy individuals (8 females and 7 males, aged 21. 3 (20.1-22.8) ± 0.6 years) and in 15 CLBP participants (8 females and 7 males, aged 20. 9 (20.2-22.6) ± 0.7 years) by recording the surface electromyographic activities of 12 back and abdominal muscles (six muscles unilaterally). Non-negative matrix factorization was performed to extract the muscle synergies. RESULTS: We found six trunk muscle synergies and temporal patterns in both groups. The high similarity of the trunk synergies and temporal patterns in the groups suggests that both groups share the common feature of the trunk coordination strategy. We also found that trunk synergies related to the lumbar erector spinae showed lower variability in the CLBP group. This may reflect the impaired back muscles that reshape the trunk synergies in the fixed structure of CLBP. Furthermore, the higher variability of trunk synergies in the other muscle regions such as in the latissimus dorsi and oblique externus, which were activated in trunk stability tasks in the CLBP group, represented more individual motor strategies when the trunk tasks were highly demanding. CONCLUSION: Our work provides the first demonstration that individual modular organization is fine-tuned while preserving the overall structures of trunk synergies and temporal patterns in the presence of persistent CLBP.


Subject(s)
Back Muscles , Low Back Pain , Male , Female , Humans , Cross-Sectional Studies , Electromyography , Muscle, Skeletal , Lumbosacral Region
13.
PLoS One ; 18(3): e0282671, 2023.
Article in English | MEDLINE | ID: mdl-36888637

ABSTRACT

Previous evidence indicated that interventions with combined neuromuscular electrical stimulation (NMES) and voluntary muscle contractions could have superior effects on corticospinal excitability when the produced total force is larger than each single intervention. However, it is unclear whether the superior effects exist when the produced force is matched between the interventions. Ten able-bodied individuals performed three intervention sessions on separate days: (i) NMES-tibialis anterior (TA) stimulation; (ii) NMES+VOL-TA stimulation combined with voluntary ankle dorsiflexion; (iii) VOL-voluntary ankle dorsiflexion. Each intervention was exerted at the same total output of 20% of maximal force and applied intermittently (5 s ON / 19 s OFF) for 16 min. Motor evoked potentials (MEP) of the right TA and soleus muscles and maximum motor response (Mmax) of the common peroneal nerve were assessed: before, during, and for 30 min after each intervention. Additionally, the ankle dorsiflexion force-matching task was evaluated before and after each intervention. Consequently, the TA MEP/Mmax during NMES+VOL and VOL sessions were significantly facilitated immediately after the interventions started until the interventions were over. Compared to NMES, larger facilitation was observed during NMES+VOL and VOL sessions, but no difference was found between them. Motor control was not affected by any interventions. Although superior combined effects were not shown compared to voluntary contractions alone, low-level voluntary contractions combined with NMES resulted in facilitated corticospinal excitability compared to NMES alone. This suggests that the voluntary drive could improve the effects of NMES even during low-level contractions, even if motor control is not affected.


Subject(s)
Ankle , Muscle, Skeletal , Humans , Young Adult , Ankle/physiology , Electric Stimulation/methods , Muscle, Skeletal/physiology , Muscle Contraction/physiology , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology , Electromyography
14.
Neuroreport ; 34(5): 280-286, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36881752

ABSTRACT

Research has demonstrated that motor and sensory functions of the lower limbs can be modulated by upper-limb muscle contractions. However, whether sensorimotor integration of the lower limb can be modulated by upper-limb muscle contractions is still unknown. [AQ: NR Original articles do not require structured abstracts. Hence, abstract subsections have been deleted. Please check.]Human sensorimotor integration has been studied using short- or long-latency afferent inhibition (SAI or LAI, respectively), which refers to inhibition of motor-evoked potentials (MEPs) elicited via transcranial magnetic stimulation by preceding peripheral sensory stimulation. In the present study, we aimed to investigate whether upper-limb muscle contractions could modulate the sensorimotor integration of the lower limbs by examining SAI and LAI. Soleus muscle MEPs following electrical tibial nerve stimulation (TSTN) during rest or voluntary wrist flexion were recorded at inter-stimulus intervals (ISIs) of 30 (i.e. SAI), 100, and 200 ms (i.e. LAI). The soleus Hoffman reflex following TSTN was also measured to identify whether MEP modulation occurred at the cortical or the spinal level. Results showed that lower-limb SAI, but not LAI, was disinhibited during voluntary wrist flexion. Furthermore, the soleus Hoffman reflex following TSTN during voluntary wrist flexion was unchanged when compared with that during the resting state at any ISI. Our findings suggest that upper-limb muscle contractions modulate sensorimotor integration of the lower limbs and that disinhibition of lower-limb SAI during upper-limb muscle contractions is cortically based.


Subject(s)
Upper Extremity , Wrist , Humans , Lower Extremity , Sensation , Muscle Contraction
15.
Exp Brain Res ; 241(4): 1089-1100, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36928923

ABSTRACT

In recent years, the neural control mechanisms of the arms and legs during human bipedal walking have been clarified. Rhythmic leg stepping leads to suppression of monosynaptic reflex excitability in forearm muscles. However, it is unknown whether and how corticospinal excitability of the forearm muscle is modulated during leg stepping. The purpose of the present study was to investigate the excitability of the corticospinal tract in the forearm muscle during passive and voluntary stepping. To compare the neural effects on corticospinal excitability to those on monosynaptic reflex excitability, the present study also assessed the excitability of the H-reflex in the forearm muscle during both types of stepping. A robotic gait orthosis was used to produce leg stepping movements similar to those of normal walking. Motor evoked potentials (MEPs) and H-reflexes were evoked in the flexor carpi radialis (FCR) muscle during passive and voluntary stepping. The results showed that FCR MEP amplitudes were significantly enhanced during the mid-stance and terminal-swing phases of voluntary stepping, while there was no significant difference between the phases during passive stepping. Conversely, the FCR H-reflex was suppressed during both voluntary and passive stepping, compared to the standing condition. The present results demonstrated that voluntary commands to leg muscles, combined with somatosensory inputs, may facilitate corticospinal excitability in the forearm muscle, and that somatosensory inputs during walking play a major role in monosynaptic reflex suppression in forearm muscle.


Subject(s)
Forearm , Robotics , Humans , Electromyography , Forearm/physiology , Muscle, Skeletal/physiology , Leg/physiology , Pyramidal Tracts/physiology , H-Reflex/physiology , Evoked Potentials, Motor/physiology
16.
Exp Brain Res ; 241(4): 979-990, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36918420

ABSTRACT

Upper- and lower-limb neuromuscular electrical stimulation (NMES) is known to modulate the excitability of the neural motor circuits. However, it remains unclear whether short-duration trunk muscle NMES could achieve similar neuromodulation effects. We assessed motor evoked potentials (MEPs) elicited through transcranial magnetic stimulation of the primary motor cortex representation of the trunk extensor muscles to evaluate corticospinal excitability. Moreover, cervicomedullary motor evoked potentials (CMEPs) were assessed through cervicomedullary junction magnetic stimulation to evaluate subcortical excitability. Twelve able-bodied individuals participated in the MEP study, and another twelve in the CMEP study. During the interventions, NMES was applied bilaterally to activate the erector spinae muscle and produce intermittent contractions (20 s ON/20 s OFF) for a total of 20 min while participants remained seated. Assessments were performed: (i) before; (ii) during (in brief periods when NMES was OFF); and (iii) immediately after the interventions to compare MEP or CMEP excitability. Our results showed that MEP responses were not affected by trunk NMES, while CMEP responses were facilitated for approximately 8 min during the intervention, and returned to baseline before the end of the 20 min stimulating period. Our findings therefore suggest that short-duration NMES of the trunk extensor muscles likely does not affect the corticospinal excitability, but it has a potential to facilitate subcortical neural circuits immediately after starting the intervention. These findings indicate that short-duration application of NEMS may be helpful in rehabilitation to enhance neuromodulation of the trunk subcortical neural motor circuits.


Subject(s)
Muscle, Skeletal , Pyramidal Tracts , Humans , Pyramidal Tracts/physiology , Muscle, Skeletal/physiology , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology , Electric Stimulation/methods , Electromyography/methods
17.
Sci Rep ; 13(1): 1909, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732556

ABSTRACT

Walking with pulling force fields acting at the body center of mass (in the forward or backward directions) is compatible with inclined walking and is used in clinical practice for gait training. From the perspective of known differences in the motor strategies that underlie walking with the respective force fields, the present study elucidated whether the adaptation acquired by walking on a split-belt treadmill with either one of the force fields affects subsequent walking in a force field in the opposite directions. Walking with the force field induced an adaptive and de-adaptive behavior of the subjects, with the aspect evident in the braking and propulsive impulses of the ground reaction force (difference in the peak value between the left and right sides for each stride cycle) as parameters. In the parameters, the adaptation acquired during walking with a force field acting in one direction was transferred to that in the opposite direction only partially. Furthermore, the adaptation that occurred while walking in a force field in one direction was rarely washed out by subsequent walking in a force field in the opposite direction and thus was maintained independently of the other. These results demonstrated possible independence in the neural functional networks capable of controlling walking in each movement task with an opposing force field.


Subject(s)
Gait , Walking , Humans , Mechanical Phenomena , Adaptation, Physiological , Acclimatization , Biomechanical Phenomena
18.
Front Sports Act Living ; 5: 1091470, 2023.
Article in English | MEDLINE | ID: mdl-36816467

ABSTRACT

Physical attractiveness is a key factor in social communication, and through this communication process, we attractively brand and express ourselves. Thus, this study investigated the biomechanical strategies used by women to express gait attractiveness. Our aim was to extend the current literature by examining this aspect of dynamic motion from the perspective of expressed, rather than perceived attractiveness. In this regard, we obtained motion capture data from 17 women, including seven professional fashion models. The participants walked on a treadmill under two conditions: 1) a normal condition in which they were instructed to walk as casually as possible; and 2) an attractive-conscious condition where they were asked to walk as attractively as possible. Then, we used whole-body kinematic data to represent motion energy at each joint, flexibility of the upper body, and the up-down/forward-backward silhouettes of the limbs, and compared these parameters between the two conditions by using statistical parametric mapping. During the attractive-conscious condition, the non-model women increased the energy of the hip and thoracolumbar joints, which emphasized the motions of their bosoms and buttocks. They also increased their upper body flexibility (possibly reflecting fertility) and continued to face front and downward. Conversely, although the fashion models partially shared the same strategy with the non-models (e.g., hip energy, upper body flexibility, and head bending downward), the strategy of the former was prominent in the stretching of the knee during the push-off phase and pulling the upper arm back, allowing them to showcase their youth and emphasize their chests. In addition, the fashion models used a wider variety of strategies to express their gait attractiveness. The findings indicate that the biomechanical strategy used to express gait attractiveness in women involves showcasing femininity, fertility, and youth. Our results not only deepen the understanding of human movement for self-expression through gait attractiveness, but they also help us comprehend self-branding behavior in human social life.

19.
Exp Brain Res ; 241(2): 527-537, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36622384

ABSTRACT

The F-wave is a motor response elicited via the antidromic firings of motor nerves by the electrical stimulation of peripheral nerves, which reflects the motoneuron pool excitability. However, the F-wave generally has low robustness i.e., low persistence and small amplitude. We recently found that motor point stimulation (MPS), which provides the muscle belly with electrical stimulation, shows different neural responses compared to nerve stimulation, e.g., MPS elicits F-waves more robustly than nerve stimulation. Here, we investigated whether F-waves induced by MPS can identify changes in motoneuron pool excitability during handgrip and motor imagery. Twelve participants participated in the present study. We applied MPS on their soleus muscle and recorded F-waves during eyes-open (EO), eyes-closed (EC), handgrip (HG), and motor imagery (MI) conditions. In the EO and EC conditions, participants relaxed with their eyes open and closed, respectively. In the HG, participants matched the handgrip force level to 30% of the maximum voluntary force with visual feedback. In the MI, they performed kinesthetic MI of plantarflexion at the maximal strength with closed eyes. In the HG and MI, the amplitudes of the F-waves induced by MPS were increased compared with those in the EO and EC, respectively. These results indicate that the motoneuron pool excitability was facilitated during the HG and MI conditions, consistent with findings in previous studies. Our findings suggest that F-waves elicited by MPS can be a good tool in human neurophysiology to assess the motoneuron pool excitability during cognitive and motor tasks.


Subject(s)
Evoked Potentials, Motor , Hand Strength , Humans , Evoked Potentials, Motor/physiology , Muscle, Skeletal/physiology , Motor Neurons/physiology , Imagery, Psychotherapy , Electric Stimulation , Electromyography/methods
20.
Sci Rep ; 13(1): 1193, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36681745

ABSTRACT

Muscle synergy analysis is useful for investigating trunk coordination patterns based on the assumption that the central nervous system reduces the dimensionality of muscle activation to simplify movement. This study aimed to quantify the variability in trunk muscle synergy during various trunk motor tasks in healthy participants to provide reference data for evaluating trunk control strategies in patients and athletes. Sixteen healthy individuals performed 11 trunk movement and stability tasks with electromyography (EMG) recording of their spinal and abdominal muscles (6 bilaterally). Non-negative matrix factorization applied to the concatenated EMG of all tasks identified the five trunk muscle synergies (W) with their corresponding temporal patterns (C). The medians of within-cluster similarity defined by scalar products in W and rmax coefficient using the cross-correlation function in C were 0.73-0.86 and 0.64-0.75, respectively, while the inter-session similarities were 0.81-0.96 and 0.74-0.84, respectively. However, the lowest and highest values of both similarity indices were broad, reflecting the musculoskeletal system's redundancy within and between participants. Furthermore, the significant differences in the degree of variability between the trunk synergies may represent the different neural features of synergy organization and strategies to overcome the various mechanical demands of a motor task.


Subject(s)
Movement , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Movement/physiology , Electromyography , Abdominal Muscles/physiology , Torso
SELECTION OF CITATIONS
SEARCH DETAIL
...