Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 102(3): 457-470, 2023 09.
Article in English | MEDLINE | ID: mdl-36856306

ABSTRACT

Multidrug resistance in breast cancer and the associated side-effects of anticancer therapies are significant hurdles in chemotherapy-based treatment. Biodegradable polymeric nano-based targeted drug delivery technologies showed tremendous advantages in targeted local delivery with limited off-targeted side effects. Therefore, there is a persistent need to develop targeted nanomedicine systems for treatment of breast cancer. The current research attempted to develop poly (lactic-co-glycolic acid) nanoparticles loaded with raloxifene by modified emulsification solvent diffusion evaporation method to improve oral bioavailability by using Taguchi design. It was observed that the optimized formulation (1:4 drug to polymer ratio) poly (lactic-co-glycolic acid) showed a mean particle size and Polydispersity index of 218 ± 23.7 nm and 0.231 ± 0.04, respectively. The entrapment efficiency was found to be 82.30% ± 1.02%. In vitro drug delivery was found to be 92.5% ± 1.48% in 40 h. The nanoparticles were to remain stable at 2°C-8°C even after 30 days. Differential scanning calorimetry and Fourier transform infrared spectroscopy characterization techniques showed that there was no interaction between the drug and excipient. Stability studies indicate that polymeric nanoparticles were stable at 2°C-8°C after 6 months. Raloxifene nanoparticles may be the most potent targeting moieties to treat highly invasive and metastatic MCF-7 breast cancer cells.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Polylactic Acid-Polyglycolic Acid Copolymer , Raloxifene Hydrochloride , Breast Neoplasms/drug therapy , Drug Carriers/chemistry , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Particle Size , Nanoparticles/chemistry
2.
Chem Biol Drug Des ; 102(2): 377-394, 2023 08.
Article in English | MEDLINE | ID: mdl-36916008

ABSTRACT

Numerous nanotech arenas in therapeutic biology have recently provided a scientific platform to manufacture a considerable swath of unique chemical entities focusing on drugs. Recently, nanoparticulate drug delivery systems have emerged to deliver a specific drug to a specified site. Among all other carriers, lipids possess features exclusive to nanostructured dosage forms. The bioavailability of orally administered drugs is typically negatively affected by their poor water solubility, resulting from the unique chemical moieties introduced. Because of their unique advantages, lipid nanoparticles must become increasingly predictable as a robust delivery mechanism. The enhanced biopharmaceutical properties and significance of lipid-based targeting technologies such as liposomes, niosomes, solid lipid nanoparticles and micelles are highlighted in this review. Pharmaceutical implications of lipid nanocarriers for the transport and distribution of various therapeutic agents, such as biotechnological products and small pharmaceutical molecules, is a booming topic. Lipid nanoparticles as drug delivery systems have many appealing properties, including high biocompatibility, ease of preparation, tissue specificity, avoidance of reticuloendothelial systems, delayed drug release, scale-up feasibility, nontoxicity and targeted delivery. The use of lipid nanoparticles to enhance the transport of biopharmaceuticals is currently considered state-of-the-art. Similarly, we critically examine the upcoming guidelines that therapeutic scientists should handle.


Subject(s)
Nanoparticles , Nanostructures , Drug Carriers/chemistry , Drug Delivery Systems/methods , Liposomes , Nanoparticles/chemistry , Nanostructures/chemistry , Micelles , Lipids/chemistry
3.
Drug Deliv Transl Res ; 12(3): 485-499, 2022 03.
Article in English | MEDLINE | ID: mdl-33738677

ABSTRACT

Nutraceuticals and food industries are opening to a tremendously upcoming technology in the field of "Nano science". A new prospect has been defined by nanotechnology by conferring modified properties of nanomaterials and its application in the development of nanoformulations, nutritional supplements and food industry. Nanomaterials reveal exclusive properties because of their small size and high surface/volume ratio; thus, they have a complete application in nutraceuticals and food sector. In the existent review article, we obligate to present a comprehensive outline of the application of nanomaterials in development of advanced nano-based nutraceuticals with enhanced bioavailability, solubility, improved encapsulation efficiency, increased stability, sustained and targeted drug delivery, protection against degradation and microbial contamination and with improved pharmacological activity. It also highlights the importance of nanomaterials as nanosensors/nano-bio sensors for encapsulating peptides, antibodies, enzymes, etc. and in the food packaging industry and its future application. Thus, the review aims to focus on the benefits and new dimensions provided by nanomaterials and nanotechnology in health sectors by improving treatment strategies and quality of life.


Subject(s)
Nanostructures , Quality of Life , Dietary Supplements , Food Industry , Nanostructures/chemistry , Nanotechnology/methods
4.
Prog Biomater ; 10(4): 309-320, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34813041

ABSTRACT

Repaglinide, a member of the meglitinide class of drugs, is a new anti-diabetic agent that is utilized as an oral hypoglycemic agent. Using glyceryl monostearate, cetyl palmitate, and tristearin as lipids and poloxamer 188 as a surfactant, repaglinide-loaded solid lipid nanoparticles were created. Solid lipid nanoparticles were prepared utilizing an o/w microemulsion technique, which included the lipids glyceryl monostearate and tristearin, as well as waxes such as cetyl palmitate and the surfactant poloxamer 188. The mean particle size of the solid lipid nanoparticles formed was around 339 nm, with an entrapment efficiency of 82.20%. In-vitro release studies continued to be conducted using the dialysis bag diffusion technique. Within 12 h, the cumulative drug release was 88.4%. The results indicate that repaglinide was released more slowly from solid lipid nanoparticles made from tristearin and glyceryl monostearate in an equal ratio. Tristearin found the controlled release and extreme entrapment from other lipid carriers like glyceryl monostearate and cetyl palmitate. Differential scanning calorimetry demonstrates that repaglinide is entangled in amorphous or molecular state within solid lipid nanoparticles. SEM microscopy revealed that the produced repaglinide solid lipid nanoparticles had a spherical shape. After one month of storage at 2-8 °C, short-term stability testing revealed no significant alteration.

5.
J Biomater Sci Polym Ed ; 32(12): 1584-1597, 2021 08.
Article in English | MEDLINE | ID: mdl-33977874

ABSTRACT

The contemporary research implicates the formulation and evaluation of a thermosensitive in situ nano gelling method to improve solubility and ocular residence time of flurbiprofen. This study was carried out in two phases. In the first phase, an insolubility drug has been formulated in the form of a nanoparticulate system and evaluated for its characteristics. The nanoparticles obtained demonstrated an average size array of 150 to 250 nm in diameter, up to 79.35% encapsulation efficiency, and up to 93.42% drug release throughout 2 h. In the second phase, nanoparticulate systems were dispersed in aqueous solutions of Pluronic F 127 (14%) and various concentrations of Carbopol 934 in combination to form an in situ nano gel. The prepared in situ gel was investigated for its physicochemical properties like pH, flowability, sol-gel transition temperature, gelling capacity, and rheological properties. Carbopol 934 did not significantly affect sol-gel transition temperature in optimized concentration (<0.3%) but altered gelling capacity, pH, and transparency of the formulations. In vivo resident time and eye irritation test was evaluated in the rabbit eye. In optimized in situ gelling formulation (NIGF3), approximately 95% of in vitro drug release was observed after 6 h. NIGF3 increased precorneal residence time and high concentration in aqueous humor when paralleled to flurbiprofen eye drops. Greater concentration of drug in aqueous humor was due to its improved saturation solubility of the drug, and amplified residence time was attributed to the formation of gel matrix-embedded nanoparticles. This demonstrated that in situ nano gels (NIGF3) comprehending aqueous solutions of 0.3% w/v concentrations of Carbopol 934 with Pluronic F 127 may ominously persist the residence time and mend bioavailability of a water-insoluble drug.


Subject(s)
Flurbiprofen , Animals , Drug Delivery Systems , Gels , Ophthalmic Solutions , Poloxamer , Rabbits
6.
Heliyon ; 6(11): e05459, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33241144

ABSTRACT

The paper aimed to progress an ideal gastro retentive drug delivery system intended for directing Losartan and Hydrochlorothiazide as a fixed-dose combination for anti-hypertensive therapy. The bilayer tablets were primed through direct compression method. Losartan was formulated by means of a floating layer expending hydrophilic swellable polymer Hydroxy Propyl Methyl Cellulose K4M, ethyl cellulose (4cps) as a buoyancy enhancer, sodium bicarbonate as a gas spawning agent. The amount of polymer blends remains optimized using 23 full factorial designs. The clout of experimental factors such as swelling agent concentration, buoyancy enhancer and gas generating agent on floating lag time, total floating time, T50% and % drug release remain investigated to get optimized formulation. The responses remain analyzed using Analysis of variance, and polynomial equation stood created for every retort using Multiple linear regression analysis. Entirely preparations floated for more than 12 h. The release pattern of losartan stood fitted to diverse models based on the coefficient of correlation (r). All the formulations, except F2, showed the Korsemeyer-Peppas model as the best fit model. Formulation F2 showed the zero-order model. Diffusion exponents (n) remained indomitable designed for entirely formulations (0.45-0.89), accordingly the chief drug discharge mechanism was non-fickian (anamolous) transport. Formulation F4 containing 20% w/w Hydroxy Propyl Methyl Cellulose K4M, 15% Sodium bicarbonate and 5% ethyl cellulose (4cps) was the best formulation as per the range of drug release remain institute to be more than 95 % in 12h and floating lag time was 20.15 s. The immediate-release layer stood optimized using crospovidone and Indion 414 as a super disintegrant. Formulation A8 containing 2% Indion 414 was considered as optimized formulation as it released 99% drug within 35 min and possessed less disintegration time. Optimized formulation F4 from the controlled-release layer and A8 from immediate-release layer was used to formulate bilayer tablet. The optimized formulation was imperilled to stability reading for three months at 40○C/75% relative humidity. The stability revision exhibited no substantial alteration in the appearance of tablets, floating characteristics, drug content and in-vitro drug dissolution. Consequently, a biphasic drug release design was effectively accomplished over the formulation of floating bilayer tablets.

SELECTION OF CITATIONS
SEARCH DETAIL
...