Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6041, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055481

ABSTRACT

Mastitis is a disease that directly affects the quantity and quality of milk produced by dairy cows, which can have a negative impact on the income generated from selling the milk. Severe inflammation caused by this mammary disease can result in up to 1 × 106 white blood cells per milliliter of cow milk. Currently, the California mastitis test is a popular chemical inspection test, but its error rate of over 40% is a significant factor in the ongoing spread of mastitis. In this study, a new microfluidic device was designed and fabricated to identify normal, sub-clinical, and clinical mastitis. This portable device allows for precise and analysis of results within a second. The device was designed to screen somatic cells and a staining process was added to identify somatic cells using single-cell process analysis. The fluorescence principle was used to identify the infection status of the milk, which was analyzed using a mini-spectrometer. The accuracy of the device was tested, and it was found to determine the infection status with 95% accuracy, compared to the accuracy obtained using the Fossomatic machine. By introducing this new microfluidic device, it is believed that the spread of mastitis in dairy cows can be significantly reduced, leading to higher quality and more profitable milk production.


Subject(s)
Mastitis, Bovine , Milk , Animals , Cattle , Female , Humans , Microfluidics , Mastitis, Bovine/diagnosis , Mammary Glands, Animal , Cell Count , Lactation
2.
Materials (Basel) ; 16(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903195

ABSTRACT

Post weld heat treatment, or PWHT, is often used to improve the mechanical properties of materials that have been welded. Several publications have investigated the effects of the PWHT process using experimental designs. However, the modeling and optimization using the integration of machine learning (ML) and metaheuristics have yet to be reported, which are fundamental steps toward intelligent manufacturing applications. This research proposes a novel approach using ML techniques and metaheuristics to optimize PWHT process parameters. The goal is to determine the optimal PWHT parameters for both single and multiple objective perspectives. In this research, support vector regression (SVR), K-nearest neighbors (KNN), decision tree (DT), and random forest (RF) were ML techniques employed to obtain a relationship model between PWHT parameters and mechanical properties: ultimate tensile strength (UTS) and elongation percentage (EL). The results show that the SVR demonstrated superior performance among ML techniques for both UTS and EL models. Then, SVR is used with metaheuristics such as differential evolution (DE), particle swarm optimization (PSO), and genetic algorithms (GA). SVR-PSO shows the fastest convergence among other combinations. The final solutions of single-objective and Pareto solutions were also suggested in this research.

3.
Materials (Basel) ; 15(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500111

ABSTRACT

This research was aimed at developing a dental prototype from 3D printing technology using a synthetic filament of polylactic acid (PLA) and zirconium dioxide (ZrO2) with glycerol and silane coupling agent as a binder. A face-centered central composite design was used to study the effects of the filament extrusion parameters and the 3D printing parameters. Tensile and compressive testing was conducted to determine the stress-strain relationship of the filaments. The yield strength, elongation percentage and Young's modulus were also calculated. Results showed the melting temperature of 193 °C, ZrO2 ratio of 17 wt.% and 25 rpm screw speed contributed to the highest ultimate tensile strength of the synthetic filament. A Nozzle temperature of 210 °C and an infill density of 100% had the most effect on the ultimate compressive strength whilst the printing speed had no significant effects. Differential scanning calorimetry (DSC) was used to study the thermal properties and percentage of crystallinity of PLA filaments. The addition of glycerol and a silane coupling agent increased the tensile strength and filament size. The ZrO2 particles induced the crystallization of the PLA matrix. A higher crystallization was also obtained from the annealing treatment resulting in the greater thermal resistance performance of the dental crown prototype.

4.
Materials (Basel) ; 15(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36143593

ABSTRACT

The main purpose of this research was to enhance the mechanical properties of friction stir welds (FSW) in the dissimilar aluminum alloys 6061-T6 and 7075-T651. The welded workpiece has tensile residual stress due to the influence of the thermal conductivity of dissimilar materials, resulting in crack initiation and less fatigue strength. The experiment started from the FSW process using the 2k full factorial with the response surface methodology (RSM) and central composite design (CCD) to investigate three factors. The experiment found that the optimal rotation speed and feed rate values were 979 and 65 mm/min, respectively. Then, the post-weld heat treatment process (PWHT) was applied. Following this, the 2k full factorial was used to investigate four factors involved in the deep rolling process (DR). The experiment found that the optimal deep rolling pressure and deep rolling offset values were 300 bar and 0.2 mm, respectively. Moreover, mechanical property testing was performed with a sequence of four design types of workpieces: FSW, FSW-PWHT, FSW-DR, and FSW-PWHT-DR. It was found that the FSW-PWHT-DR workpiece had an increase in tensile strength of up to 26.29% and increase in fatigue life of up to 129.47% when compared with the FSW workpieces, as well as a maximum compressive residual stress of -414 MPa.

5.
Materials (Basel) ; 14(5)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800076

ABSTRACT

In this paper, we propose hot-wire plasma welding, a combination of the plasma welding (PAW) process and the hot-wire process in the additive manufacturing (AM) process. Generally, in plasma welding for AM processes, the deposit grain size increases, and the hardness decreases as the wall height increases. The coarse microstructure, along with the large grain size, corresponds to an increase in deposit temperature, which leads to poorer mechanical properties. At the same time, the hot-wire laser process seems to contain an overly high interstitial amount of oxygen and nitrogen. With an increasing emphasis on sustainability, the hot-wire plasma welding process offers significant advantages: deeper and narrow penetration than the cold-wire plasma welding, improved design flexibility, large deposition rates, and low dilution percentages. Thus, the hot-wire plasma welding process was investigated in this work. The wire used in the welding process was a titanium American Welding Society (AMS) 4951F (Grade 2) welding wire (diameter 1.6 mm), in which the welding was recorded in real time with a charge-coupled device camera (CCD camera). We studied three parameters of the hot-wire plasma welding process: (1) the welding speed, (2) wire current, and (3) wire feeding speed. The mechanical and physical properties (porosity, Vickers hardness, microstructure, and tensile strength) were examined. It was found that the number of layers, the length and width of the molten pool, and the width of the deposited bead increased, while the height of the layer increased, and the hot-wire current played an important role in the deposition. In addition, these results were benchmarked against specimens created by a hot-wire plasma welding/wire-based additive manufacturing process with an intention to develop the hot-wire PAW process as a potential alternative in the additive manufacturing industry.

6.
Materials (Basel) ; 13(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756370

ABSTRACT

The full-thickness articular cartilage defect (FTAC) is an abnormally severe grade of articular cartilage (AC) injury. An osteochondral autograft transfer (OAT) is the recommended treatment, but the increasing morbidity rate from osteochondral plug harvesting is a limitation. Thus, the 3D-printed bilayer's bioactive-biomaterials scaffold is of major interest. Polylactic acid (PLA) and polycaprolactone (PCL) were blended with hydroxyapatite (HA) for the 3D-printed bone layer of the bilayer's bioactive-biomaterials scaffold (B-BBBS). Meanwhile, the blended PLA/PCL filament was 3D printed and combined with a chitosan (CS)/silk firoin (SF) using a lyophilization technique to fabricate the AC layer of the bilayer's bioactive-biomaterials scaffold (AC-BBBS). Material characterization and mechanical and biological tests were performed. The fabrication process consists of combining the 3D-printed structure (AC-BBBS and B-BBBS) and a lyophilized porous AC-BBBS. The morphology and printing abilities were investigated, and biological tests were performed. Finite element analysis (FEA) was performed to predict the maximum load that the bilayer's bioactive-biomaterials scaffold (BBBS) could carry. The presence of HA and CS/SF in the PLA/PCL structure increased cell proliferation. The FEA predicted the load carrying capacity to be up to 663.2 N. All tests indicated that it is possible for BBBS to be used in tissue engineering for AC and bone regeneration in FTAC treatment.

7.
Materials (Basel) ; 13(7)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231063

ABSTRACT

The biomaterials polylactic acid (PLA), polycaprolactone (PCL), and hydroxyapatite (HA) were selected to fabricate composite filaments for 3D printing fused filament fabrication (FFF), which was used to fabricate a composite biomaterial for an interlocking nail for canine diaphyseal fractures instead of metal bioinert materials. Bioactive materials were used to increase biological activities and provide a high possibility for bone regeneration to eliminate the limitations of interlocking nails. HA was added to PLA and PCL granules in three ratios according to the percentage of HA: 0%, 5%, and 15% (PLA/PCL, PLA/PCL/5HA, and PLA/PCL/15HA, respectively), before the filaments were extruded. The test specimens were 3D-printed from the extruded composite filaments using an FFF printer. Then, a group of test specimens was coated by silk fibroin (SF) using the lyophilization technique to increase their biological properties. Mechanical, biological, and chemical characterizations were performed to investigate the properties of the composite biomaterials. The glass transition and melting temperatures of the copolymer were not influenced by the presence of HA in the PLA/PCL filaments. Meanwhile, the presence of HA in the PLA/PCL/15HA group resulted in the highest compressive strength (82.72 ± 1.76 MPa) and the lowest tensile strength (52.05 ± 2.44 MPa). HA provided higher bone cell proliferation, and higher values were observed in the SF coating group. Therefore, FFF 3D-printed filaments using composite materials with bioactive materials have a high potential for use in fabricating an interlocking nail for canine diaphyseal fractures.

8.
Materials (Basel) ; 12(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31717709

ABSTRACT

The aim of this research is to investigate the sequence of processes for improving the welded surface integrity of AA7075-T651 aluminum alloy joined by friction stir welding (FSW). The improvement processes that will be investigated herein include mechanical surface improvement with deep rolling (DR) and post-weld heat treatment (PWHT). Therefore, this study investigated welded surface integrity, which comprises residual stress, microhardness, surface roughness, microstructure, and fatigue life (screening). The experiment consists of three sets of combinations. In the first set, only FSW was applied; in the second set, FSW was applied, followed by DR, and then PWHT processes (FSW-DR-PWHT); and in the last set, FSW was applied, followed by PWHT, and then DR processes (FSW-PWHT-DR). Fatigue testing was carried out by undertaking a four-point bending test using a bending stress of approximately 300 MPa with a test frequency of 2.5 Hz at room temperature and stress ratio R = 0. The study found that residual stress plays an important role in the fatigue life. Finally, the fatigue test showed that FSW workpieces subject to the PWHT process followed by the DR process (FSW-PWHT-DR) had the highest fatigue life, with an increase of 239% when compared with unprocessed FSW workpieces.

SELECTION OF CITATIONS
SEARCH DETAIL
...