Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Lupus ; 33(2): 166-171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38073556

ABSTRACT

BACKGROUND: Despite significant progress in understanding the mechanisms underlying hippocampal involvement in neuropsychiatric systemic lupus erythematosus (NPSLE), our understanding of how neuroinflammation affects the brain neurotransmitter systems is limited. To date, few studies have investigated the role of neurotransmitters in pathogenesis of NPSLE with contradictory results. METHODS: Hippocampal tissue from NZB/W-F1 lupus-prone mice and age-matched control strains were dissected in both pre-nephritic (3-month-old) and nephritic (6-month-old) stages. High-Performance Liquid Chromatography (HPLC) was used to evaluate the level of serotonin (5-HT), dopamine (DA), and their metabolites 5-HIAA and DOPAC, respectively, in mouse hippocampi. RESULTS: Lupus mice exhibit decreased levels of serotonin at the early stages of the disease, along with intact levels of its metabolite 5-HIAA. The 5-HT turnover ratio (5-HIAA/5-HT ratio) was increased in the hippocampus of lupus mice at pre-nephritic stage suggesting that low hippocampal serotonin levels in lupus are attributed to decreased serotonin synthesis. Both DA and DOPAC levels remained unaffected in lupus hippocampus at both early and late stages. CONCLUSION: Impaired hippocampal serotonin synthesis in the hippocampus of lupus-prone mice represents an early neuropsychiatric event. These findings may have important implications for the use of symptomatic therapy in diffuse NPSLE.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Vasculitis, Central Nervous System , Mice , Animals , Serotonin/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Hydroxyindoleacetic Acid/metabolism , Lupus Erythematosus, Systemic/metabolism , Dopamine/metabolism , Hippocampus , Lupus Vasculitis, Central Nervous System/metabolism
2.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208969

ABSTRACT

Imperatorin, a naturally derived furanocoumarin, exerts promising neuropharmacological properties. Therefore, it might be applicable in the treatment of brain diseases such as depression. In the present project, we aimed to investigate the sex-dependent effects of imperatorin (1, 5, and 10 mg/kg) on behavior and neurochemistry associated with antidepressant effects. The depressive-like behaviors of male and female Swiss mice were investigated in a forced swim test (FST). Subsequently, High-Performance Liquid Chromatography (HPLC) was used to evaluate the level of serotonin, its metabolite, 5-HIAA, and noradrenaline, in mouse brains. The study revealed that only males responded to imperatorin (1 and 5 mg/kg) treatment and caused an antidepressant effect, such as with respect to depressive-like behaviors, lowering immobility time and increasing immobility latency. The HPLC analysis demonstrated that serotonin levels in the prefrontal cortex of females decreased with the middle dose of imperatorin (5 mg/kg), while in the male prefrontal cortex, the lower dose (1 mg/kg) boosted serotonin levels. There were no evident changes observed with respect to noradrenaline and serotonin metabolite levels in the male hippocampus. To conclude, we propose that imperatorin has antidepressant potential, seemingly only in males, influencing brain serotonin level, but the direct mechanism of action requires further investigation.


Subject(s)
Behavior, Animal/drug effects , Depression , Furocoumarins/pharmacology , Prefrontal Cortex , Sex Characteristics , Animals , Depression/drug therapy , Depression/metabolism , Depression/physiopathology , Female , Furocoumarins/pharmacokinetics , Male , Mice , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology
3.
Cell Tissue Res ; 385(3): 675-696, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34037836

ABSTRACT

The desmin-associated protein myospryn, encoded by the cardiomyopathy-associated gene 5 (CMYA5), is a TRIM-like protein associated to the BLOC-1 (Biogenesis of Lysosomes Related Organelles Complex 1) protein dysbindin. Human myospryn mutations are linked to both cardiomyopathy and schizophrenia; however, there is no evidence of a direct causative link of myospryn to these diseases. Therefore, we sought to unveil the role of myospryn in heart and brain. We have genetically inactivated the myospryn gene by homologous recombination and demonstrated that myospryn null hearts have dilated phenotype and compromised cardiac function. Ultrastructural analyses revealed that the sarcomere organization is not obviously affected; however, intercalated disk (ID) integrity is impaired, along with mislocalization of ID and sarcoplasmic reticulum (SR) protein components. Importantly, cardiac and skeletal muscles of myospryn null mice have severe mitochondrial defects with abnormal internal vacuoles and extensive cristolysis. In addition, swollen SR and T-tubules often accompany the mitochondrial defects, strongly implying a potential link of myospryn together with desmin to SR- mitochondrial physical and functional cross-talk. Furthermore, given the reported link of human myospryn mutations to schizophrenia, we performed behavioral studies, which demonstrated that myospryn-deficient male mice display disrupted startle reactivity and prepulse inhibition, asocial behavior, decreased exploratory behavior, and anhedonia. Brain neurochemical and ultrastructural analyses revealed prefrontal-striatal monoaminergic neurotransmitter defects and ultrastructural degenerative aberrations in cerebellar cytoarchitecture, respectively, in myospryn-deficient mice. In conclusion, myospryn is essential for both cardiac and brain structure and function and its deficiency leads to cardiomyopathy and schizophrenia-associated symptoms.


Subject(s)
Intracellular Signaling Peptides and Proteins/deficiency , Muscle Proteins/deficiency , Myocardium/pathology , Schizophrenia/genetics , Animals , Female , Humans , Male , Mice
4.
Behav Brain Res ; 399: 112985, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33144177

ABSTRACT

The present study aimed to evaluate xanthotoxin's influence on male and female Swiss mice's depression-like behaviors and investigate the potential mechanism of this effect. Naturally derived furanocoumarin (the Apiaceae family), xanthotoxin, administered acutely (12.5 mg/kg), diminished the immobility level in the forced swim test only in males. The immobility level was lower in females than males, which may be associated with a higher serotonin level in the female prefrontal cortex. A dose-dependent increase of serotonin and noradrenaline was reported in the reverse-phase ion-pair liquid chromatography in the female prefrontal cortex but not in the hippocampus. We suggest that xanthotoxin may exert antidepressant properties and affect males and females differently. The increasing level of serotonin in the male and female prefrontal cortex may underlie this effect.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depression/drug therapy , Hippocampus/drug effects , Methoxsalen/pharmacology , Norepinephrine/metabolism , Prefrontal Cortex/drug effects , Serotonin/metabolism , Animals , Antidepressive Agents/administration & dosage , Female , Hippocampus/metabolism , Male , Methoxsalen/administration & dosage , Mice , Plant Preparations , Prefrontal Cortex/metabolism , Sex Characteristics , Sex Factors
5.
Mov Disord ; 36(3): 716-728, 2021 03.
Article in English | MEDLINE | ID: mdl-33200461

ABSTRACT

BACKGROUND: Parkinson's disease psychosis is a prevalent yet underreported and understudied nonmotor manifestation of Parkinson's disease and, arguably, the most debilitating. It is unknown if α-synuclein plays a role in psychosis, and if so, this endophenotype may be crucial for elucidating the neurodegenerative process. OBJECTIVES: We sought to dissect the underlying neurobiology of novelty-induced hyperactivity, reminiscent of psychosis-like behavior, in human α-synuclein BAC rats. RESULTS: Herein, we demonstrate a prodromal psychosis-like phenotype, including late-onset sensorimotor gating disruption, striatal hyperdopaminergic signaling, and persistent novelty-induced hyperactivity (up to 18 months), albeit reduced baseline locomotor activity, that is augmented by d-amphetamine and reversed by classical and atypical antipsychotics. MicroRNA-mediated α-synuclein downregulation in the ventral midbrain rescues the hyperactive phenotype and restores striatal dopamine levels. This phenotype is accompanied by an abundance of age-, brain region- and gene dose-dependent aberrant α-synuclein, including hyperphosphorylation, C-terminal truncation, aggregation pathology, and mild nigral neurodegeneration (27%). CONCLUSIONS: Our findings demonstrate a potential role of α-synuclein in Parkinson's disease psychosis and provide evidence of region-specific perturbations prior to neurodegeneration phenoconversion. The reported phenotype coincides with the latest clinical findings that suggest a premotor hyperdopaminergic state may occur, while at the same time, premotor psychotic symptoms are increasingly being recognized. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Psychotic Disorders , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Psychotic Disorders/genetics , Rats , Rats, Transgenic , Substantia Nigra/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
6.
Biomolecules ; 10(6)2020 06 16.
Article in English | MEDLINE | ID: mdl-32560161

ABSTRACT

Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson's disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order for patients to receive maximal therapeutic benefit and vice versa; disease-modifying therapies must become available for patients whose potential for disease diagnosis and prognosis can be predicted with biomarkers. This review provides an overview of the milestones achieved to date in the therapeutic strategy development of disease-modifying therapies and biomarkers for PD, with a focus on the most common and advanced genetically linked targets alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2) and glucocerebrosidase (GBA1). Furthermore, we discuss the convergence of the different pathways and the importance of patient stratification and how these advances may apply more broadly to idiopathic PD. The heterogeneity of PD poses a challenge for therapeutic and biomarker development, however, the one gene- one target approach has brought us closer than ever before to an unprecedented number of clinical trials and biomarker advancements.


Subject(s)
Biomarkers , Genetic Therapy/trends , Molecular Targeted Therapy/trends , Parkinson Disease/therapy , Animals , Biomarkers/analysis , Biomarkers/metabolism , Genetic Heterogeneity , Genetic Therapy/methods , History, 21st Century , Humans , Molecular Targeted Therapy/methods , Mutation , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...