Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(11): 2943-2953, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36937590

ABSTRACT

Pd-catalyzed C-H functionalization reactions of non-directed substrates have recently emerged as an attractive alternative to the use of directing groups. Key to the success of these transformations has been the discovery of new ligands capable of increasing both the reactivity of the inert C-H bond and the selectivity of the process. Among them, a new type of S,O-ligand has been shown to be highly efficient in promoting a variety of Pd-catalyzed C-H olefination reactions of non-directed arenes. Despite the success of this type of S,O-ligand, its role in the C-H functionalization processes is unknown. Herein, we describe a detailed mechanistic study focused on elucidating the role of the S,O-ligand in the Pd-catalyzed C-H olefination of non-directed arenes. For this purpose, several mechanistic tools, including isolation and characterization of reactive intermediates, NMR and kinetic studies, isotope effects and DFT calculations have been employed. The data from these experiments suggest that the C-H activation is the rate-determining step in both cases with and without the S,O-ligand. Furthermore, the results indicate that the S,O-ligand triggers the formation of more reactive Pd cationic species, which explains the observed acceleration of the reaction. Together, these studies shed light on the role of the S,O-ligand in promoting Pd-catalyzed C-H functionalization reactions.

2.
Org Lett ; 21(23): 9339-9342, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31710228

ABSTRACT

Herein, we report a highly selective C-H olefination of directing-group-free indolines (C5) and tetrahydroquinolines (C6) by Pd/S,O-ligand catalysis. In the presence of the S,O-ligand, a wide range of challenging indolines, tetrahydroquinolines, and olefins was efficiently olefinated under mild reaction conditions. The synthetic potential of this methodology was demonstrated by the efficient olefination of several indoline-based natural products.

3.
J Am Chem Soc ; 141(16): 6719-6725, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30922056

ABSTRACT

Herein we report a highly para-selective C-H olefination of aniline derivatives by a Pd/S,O-ligand-based catalyst. The reaction proceeds under mild reaction conditions with high efficiency and broad substrate scope, including mono-, di-, and trisubstituted tertiary, secondary, and primary anilines. The S,O-ligand is responsible for the dramatic improvements in substrate scope and the high para-selectivity observed. This methodology is operationally simple, scalable, and can be performed under aerobic conditions.

4.
ACS Catal ; 7(9): 6342-6346, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28966841

ABSTRACT

Pd(II)-catalyzed C-H functionalization of nondirected arenes has been realized using an inexpensive and easily accessible type of bidentate S,O-ligand. The catalytic system shows high efficiency in the C-H olefination reaction of electron-rich and electron-poor arenes. This methodology is operationally simple, scalable, and can be used in late-stage functionalization of complex molecules. The broad applicability of this catalyst has been showcased in other transformations such as Pd(II)-catalyzed C-H acetoxylation and allylation reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...