Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Res ; 44(6): 2555-2565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821604

ABSTRACT

BACKGROUND/AIM: Breast cancer is the most prevalent form of cancer among women worldwide, with a high mortality rate. While the most common cause of breast cancer death is metastasis, there is currently no potential treatment for patients at the metastatic stage. The present study investigated the potential of using a combination of HSP90 and mTOR inhibitor in the treatment of breast cancer cell growth, migration, and invasion. MATERIALS AND METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) was used to investigate the gene expression profiles. Western blot analysis and fluorescence staining were used for protein expression and localization, respectively. MTT, wound healing, and transwell invasion assays were used for cell proliferation, migration, and invasion, respectively. RESULTS: GEPIA demonstrated that HSP90 expression was significantly higher in breast invasive carcinoma compared to other tumor types, and this expression correlated with mTOR levels. Treatment with 17-AAG, an HSP90 inhibitor, and Torkinib, an mTORC1/2 inhibitor, significantly inhibited cell proliferation. Moreover, combination treatment led to down-regulation of AKT. Morphological changes revealed a reduction in F-actin intensity, a marked reduction of YAP, with interference in nuclear localization. CONCLUSION: Targeting HSP90 and mTOR has the potential to suppress breast cancer cell growth and progression by disrupting AKT signaling and inhibiting F-actin polymerization. This combination treatment may hold promise as a therapeutic strategy for breast cancer treatment that ameliorates adverse effects of a single treatment.


Subject(s)
Actins , Breast Neoplasms , Cell Movement , Cell Proliferation , HSP90 Heat-Shock Proteins , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Phosphorylation/drug effects , Actins/metabolism , Actins/genetics , Cell Line, Tumor , Neoplasm Invasiveness , Signal Transduction/drug effects , Lactams, Macrocyclic/pharmacology , Benzoquinones/pharmacology , MTOR Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
2.
Int J Med Sci ; 20(9): 1123-1134, 2023.
Article in English | MEDLINE | ID: mdl-37575276

ABSTRACT

As colorectal cancer (CRC) usually presents at an advanced stage, it responds poorly to traditional surgery and chemoradiotherapy. Reactive oxygen species (ROSs) are a critical factor in cancer progression. Quercetin, a bioflavonoid derived from onion peel extract, provides great anti-oxidant and anti-cancer potential. Therefore, quercetin in combination with N-Acetylcysteine (NAC), a well-known anti-oxidant and adjuvant agent in cancer-chemotherapeutic drugs, was considered as a way of increasing treatment efficacy. Thus, this study aimed to evaluate the improvement effect of quercetin in combination with NAC in human CRC (HT-29 and HCT-116) cell progression, migration and invasion. Firstly, the effects of quercetin, NAC, and the combination of quercetin and NAC on cellular oxidants and glutathione levels were evaluated. Cell viability, anti-migrative activity and invasive activity were determined by MTT, wound healing, and Matrigel invasion tests, respectively. Then, the proteins involved in cell migration, invasion, and cellular oxidants were investigated. Moreover, the gene expression and overall survival were further validated by the GEPIA2 database. The results reveal that the combination was most effective in decreasing cellular oxidants and increasing glutathione levels, while there was a significant decrease in cancer cell migration and invasion involved in the suppression of iNOS, ICAM-1, and MMP-2 proteins. Furthermore, bioinformatic analysis verified that iNOS, ICAM-1, and MMP-2 were highly expressed in CRC tissue and also associated with a poor prognosis. This study demonstrated that Quercetin has higher efficacy when used in combination with NAC, representing a potential combination agent for anti-cancer drug development.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Glutathione/pharmacology , Intercellular Adhesion Molecule-1 , Matrix Metalloproteinase 2/genetics , Onions , Quercetin/pharmacology , Quercetin/therapeutic use
3.
Biomed Pharmacother ; 155: 113757, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36271545

ABSTRACT

Colorectal cancer (CRC) progression is strongly influenced by the tumor microenvironment (TME) in which cancer-associated fibroblasts (CAFs) are the major components influencing CRC growth and progression. The present study aimed to investigate the effect of YAP on F-actin arrangement in CAF transformation and the possibility of using YAP as a target for inhibiting CRC growth and progression. Conditioned media were collected from direct interaction between CRC cells and fibroblasts. CAF markers were investigated by flow cytometry, western blot analysis, and immunofluorescence assay in CM-treated fibroblasts. Promoting the CRC progression of conditioned media was determined in CRC cells by using MTT assay, fluorescence assay, wound healing assay, transwell migration assay, and tubulogenesis. The results showed that the conditioned media induced the expression of CAF markers associated with the central rearrangement of F-actin in colon fibroblasts, upregulating and promoting the nuclear translocation of YAP. The conditioned media also significantly promoted the proliferation, migration, invasion, and angiogenesis of CRC cells. Interestingly, Verteporfin, a YAP inhibitor during cocultivation, abolished the conversion of CAFs and inhibited proliferation, migration, invasion, and angiogenesis in CRC cells. Moreover, bioinformatics analysis was employed to determine the potential role of YAP as a prognostic marker in CRC patients from databases. The results suggested that YAP has higher expression in CRC patients and is associated with a poor prognosis. In conclusion, these findings demonstrate that YAP-related F-actin rearrangement may be a potential new target of combination therapy with a focus on targeting TME.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Actins/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Verteporfin/pharmacology , Verteporfin/metabolism , Colorectal Neoplasms/pathology , Cell Proliferation , Cell Movement , Cell Line, Tumor , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...