Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 37(21): e9626, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37799033

ABSTRACT

RATIONALE: Trimetazidine and its metabolites are prohibited substances in sports. With a growing number of adverse findings in human athletes, it is crucial to develop doping control strategies that include screening for trimetazidine in animal sports. This study aims to detect and characterize trimetazidine and its metabolites for doping control in camel racing. METHODS: Camel urine and plasma samples were collected from four healthy animals following a single oral dose of trimetazidine. In vitro investigations were conducted using camel liver samples. Liquid-liquid extraction and solid-phase extraction techniques were employed for the extraction of trimetazidine metabolites from plasma and urine matrices. The metabolites were analyzed using a Thermo Orbitrap Exploris LC-MS system with optimized settings to achieve maximum sensitivity and accurate mass measurements. RESULTS: Comprehensive metabolite profiling of trimetazidine in camels revealed the identification of seven phase I and five phase II metabolites. Phase I metabolites were primarily formed through dealkylation, while phase II metabolites were dominated by glucuronide conjugation of demethylated trimetazidine. The findings provided insights into the distinct metabolic pathways and biotransformation patterns of trimetazidine in camels under the experimental conditions. CONCLUSION: The developed method enables detection and characterization of trimetazidine and its metabolites in camels. The identified metabolites have the potential to serve as marker metabolites for trimetazidine abuse in camel racing. This study provides valuable insights into the metabolism of trimetazidine in camels.


Subject(s)
Doping in Sports , Trimetazidine , Animals , Humans , Trimetazidine/urine , Camelus , Doping in Sports/prevention & control , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Substance Abuse Detection/methods
2.
Rapid Commun Mass Spectrom ; 37(22): e9633, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37817338

ABSTRACT

RATIONALE: The use of selective androgen receptor modulators (SARM) in sports is prohibited by the World Anti-Doping Agency (WADA) due to their potential as performance-enhancing drugs, offering an unfair advantage. LGD-4033 is a SARM known for its similarities to anabolic steroids and can be easily purchased online, leading to increased availability and misuse. Adverse analytical findings have revealed the presence of SARMs in dietary supplements. Although LGD-4033 misuse has been reported in human sports over the years, concerns also arise regarding its illicit use in animal sports, including camel racing. Although various studies have investigated the metabolism of LGD-4033 in humans, horse, and other species, there is limited research specifically dedicated to racing camels. METHODS: This study focuses on the in vitro metabolism of LGD-4033 in homogenized camel liver using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to identify and characterize the metabolites. RESULTS: The findings indicated the presence of 12 phase I metabolites and 1 phase II metabolite. Hydroxylation was responsible for the formation of the main phase I metabolites that were identified. A glucuronic acid conjugate of the parent drug was observed in this study, but no sulfonic acid conjugate was found. The possible chemical structures of these metabolites, along with their fragmentation patterns, were identified using MS. CONCLUSIONS: These findings provide valuable insights into the metabolism of LGD-4033 in camels and aid in the development of effective doping control methods for the detection of SARMs in camel racing.


Subject(s)
Anabolic Agents , Doping in Sports , Animals , Humans , Anabolic Agents/analysis , Androgens/analysis , Camelus , Doping in Sports/prevention & control , Liver/chemistry , Receptors, Androgen/metabolism , Substance Abuse Detection/methods
3.
Anal Sci Adv ; 2(9-10): 427-439, 2021 Oct.
Article in English | MEDLINE | ID: mdl-38716441

ABSTRACT

Corticoids have found their way into the globe of sports, due to their anti-inflammatory properties, and have often found to be added to dietary supplements for illegally improving the effectiveness of their products. Earlier studies describe the detection of corticoids in several matrices, but this can be an incessant and continuous process as long because the doping practices continue. In this study, we report a technique to verify concurrently 44 of the foremost commonly abused synthetic corticoids (including chiral analogs) in equine plasma supported chiral liquid chromatography-electrospray ionization mass spectrometry. Polysaccharide i-cellulose-5 column was used for chromatographic separation with a gradient mode. The validation studies were also meted out by using equine plasma so as to judge the suitability of the strategy. Detection limits were determined between 0.01 and 0.05 ng/mL and therefore the limit of quantification was between 0.1 and 0.5 ng/mL. Recovery and matrix effect on the analytes was further assessed. Since the developed method was ready to separate the corticoids and to differentiate chiral analogs at very low levels (in picograms), this separation techniques may be employed for the determination (confirmatory analysis) of the corticoids in the forensic and anti-doping application.

4.
J Anal Toxicol ; 44(5): 490-498, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32020176

ABSTRACT

Recently, an increased tendency to use various metals has been observed in the sports competition fields. Many of these metals and their organic complexes reportedly have good pharmacologic, therapeutic and performance-enhancement uses; they are banned or recommended as controlled medications in competitive sports. The objective of this research was to determine the concentration of pharmacologically relevant metals in urine samples collected from racehorses at various sport events, develop a method and assess the concentrations of above metals using inductively coupled plasma mass spectrometry (ICP-MS). Seven alkali-alkaline earth metals (lithium, sodium, potassium, magnesium, calcium, strontium and barium) and six heavy metals (chromium, cobalt, copper, zinc, arsenic and selenium) were studied in detail. To compare and confirm the concentrations of these metals, the screening was carried out on the basis of region and sex of the animal. ICP-MS provides extremely high sensitivity that enables the determination of the metals at very low concentration from complex biological matrices. From the research, it is clear that irrespective of sex and region the concentration of metal is very high in some samples, might be accidental or intentional doping to improve sporting performances. This research work is of significant importance in setting threshold values for screening metals in race day samples in order to avoid potential harmful effects on athletes and the depth of malpractices, it can bring to sports.


Subject(s)
Doping in Sports , Horses/metabolism , Metals/urine , Performance-Enhancing Substances/urine , Substance Abuse Detection/methods , Trace Elements/urine , Animals , Arsenic , Chromium , Cobalt , Performance-Enhancing Substances/blood , Potassium , Selenium , Sodium , Spectrophotometry, Atomic , Trace Elements/blood
5.
Chirality ; 32(3): 314-323, 2020 03.
Article in English | MEDLINE | ID: mdl-31925851

ABSTRACT

The detection and separation of medetomidine enantiomers from the complex biological matrices poses a great analytical challenge, especially in the field of forensic toxicology and pharmacology. Couple of researchers reported resolution of medetomidine using protein-based chiral columns, but the reported method is quiet challenging and tedious to be employed for routine analysis. This research paper reported a method that enables the enantio-separation of medetomidine by using polysaccharide cellulose chiral column. The use of chiralcel OJ-3R column was found to have the highest potential for successful chiral resolution. Ammonium hydrogen carbonate was the ideal buffer salt for chiral liquid chromatography (LC) with electrospray ionization (ESI)+ mass spectrometry (MS) detection for the successful separation and detection of racemic compound. The method was linear over the range of 0 to 20 ng/mL in equine plasma and the inter-day precisions of levomedetomidine, dexmedetomidine were 1.36% and 1.89%, respectively. The accuracy of levomedetomidine was in the range of 99.25% to 101.57% and that for dexmedetomidine was 99.17% to 100.99%. The limits of quantification for both isomers were 0.2 ng/mL. Recovery and matrix effect on the analytes were also evaluated. Under the optimized conditions, the validated method can be adapted for the identification and resolution of the medetomidine enantiomers in different matrices used for drug testing and analysis.


Subject(s)
Chromatography, Liquid/methods , Medetomidine/blood , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Cellulose/chemistry , Dexmedetomidine/blood , Dexmedetomidine/isolation & purification , Horses , Limit of Detection , Medetomidine/chemistry , Medetomidine/isolation & purification , Stereoisomerism
6.
Chirality ; 31(8): 568-574, 2019 08.
Article in English | MEDLINE | ID: mdl-31250489

ABSTRACT

Chiral considerations are found to be very much relevant in various aspects of forensic toxicology and pharmacology. In forensics, it has become increasingly important to identify the chirality of doping agents to avoid legal arguments and challenges to the analytical findings. The scope of this study was to develop an liquid chromatography-mass spectrometry (LCMS) method for the enantiomeric separation of typical illicit drugs such as ephedrines (ie, 1S,2R(+)-ephedrine and 1R,2S(-)-ephedrine) and pseudoephedrine (ie, R,R(-)-pseudoephedrine and S,S(+)-pseudoephedrine) by using normal phase chiral liquid chromatography-high-resolution mass spectrometry technique. Results show that the Lux i-amylose-1 stationary phase has very broad and balancing-enantio-recognition properties towards ephedrine analogues, and this immobilized chiral stationary phase may offer a powerful tool for enantio-separation of different types of pharmaceuticals in the normal phase mode. The type of mobile phase and organic modifier used appear to have dramatic influences on separation quality. Since the developed method was able to detect and separate the enantiomers at very low levels (in pico grams), this method opens easy access for the unambiguous identification of these illicit drugs and can be used for the routine screening of the biological samples in the antidoping laboratories.

7.
Steroids ; 140: 77-82, 2018 12.
Article in English | MEDLINE | ID: mdl-30296548

ABSTRACT

Chirality is one of the most important considerations when controlling doping. The epimeric corticosteroids dexamethasone and betamethasone are significantly potent and long-acting, and they are highly abused in equestrian sports. The scope of this study was to develop a simple and reliable analytical method for simultaneously identifying and separating regularly abused co-eluting corticosteroids in equine urine and plasma. In this paper, we present a simple and rapid method for the chiral separation and identification of epimeric mixtures of dexamethasone and betamethasone using a Thermo Q Exactive high resolution accurate mass spectrometer. The high resolution accurate mass spectrometer system provided extremely high sensitivity, enabling detection of each isomer at a very low concentration from complex biological matrices. Chromatographic separation was performed using amylose and cellulose chiral columns. Reversed phase media showed very good potential for providing a successful chiral resolution in LC-MS analysis. This study also focused on optimizing the mobile phase for elution strength, nature of the organic modifier, additives, and column temperature.


Subject(s)
Betamethasone/blood , Betamethasone/isolation & purification , Blood Chemical Analysis/methods , Chromatography, Reverse-Phase/methods , Dexamethasone/blood , Dexamethasone/isolation & purification , Urinalysis/methods , Animals , Doping in Sports/prevention & control , Horses , Limit of Detection , Linear Models , Solid Phase Extraction , Solvents/chemistry
8.
J Mass Spectrom ; 53(11): 1046-1058, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30098588

ABSTRACT

The major challenge in identifying dexamethasone, betamethasone, and paramethasone from a mixture of these corticosteroids is difficulty in achieving an efficient separation. In this study, we aimed to develop an efficient technique to identify these co-eluting isomers based on the mass spectral patterns of them and their corresponding phase II metabolites after electrospray ionization. Fragmentation pathways in tandem mass spectrometry revealed acceptable specificity within the groups of conjugates. The method was validated using individual isomers and mixtures at various compositions. The effects of concentration and collision energies on fragmentation patterns were also studied extensively. Matrix-fortified equine urine and plasma samples were also included so that matrix effects and interferences on fragmentation ratios could be elucidated. Preliminary results using biological samples demonstrated the suitability of this analytical strategy for direct measurement from their fragmentation patterns. Possible fragmentation pathways for each isomer were proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...