Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(18): 12052-12064, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36073019

ABSTRACT

The Lewis acid organocatalytic system of lithium tetramethylene-tethered bis[N-(N'-butylimidazol-2-ylidene)] N-heterocyclic carbene (1,4-bisNHC) including lithium benzyloxide and benzyl alcohol has been successfully utilized in the ring-opening polymerization (ROP) of ε-caprolactone (CL) for the first time. The catalytic performance of this organic catalyst in the synthesis of high-molecular-weight polymers was investigated via bulk polymerization using different combinations of tetramethylene-tethered bis[N-(N'-butylimidazolium)] hexafluorophosphate (1,4-bis[Bim][PF6]), benzyl alcohol (BnOH), and n-butyl lithium (nBuLi) ([1,4-bis[Bim][PF6]]/[BnOH]/[nBuLi]) with the molar ratios of 0:2:2, 1:1:3, 1:2:3, and 1:2:4. The results showed that the molar ratio of 1:2:3 efficiently and rapidly initiated the bulk ROP of CL at room temperature with a high molar ratio of CL to 1,4-bis[Bim][PF6] of 3000/1 and produced the highest number of average-molecular-weight (Mn) poly(ε-caprolactone) (103,057 g mol-1) with the dispersity (D̵) and %conversion of 1.73 and 98% in a short period of time (152 s). From comparative studies, the relative polymerization rates of the bulk ROP of CL with different [1,4-bis[Bim][PF6]]/[BnOH]/[nBuLi] molar ratios was determined in the following order: 1:2:4 > 1:1:3 > 1:2:3 > 0:2:2. For mechanistic investigation, the bulk ROP mechanism of CL with our organic catalyst was proposed through the intramolecular bis-lithium-carbene interaction pathway for 1,4-bisNHC1,1,3, 1,4-bisNHC1,2,3, and 1,4-bisNHC1,2,4 systems.

2.
J Biomater Sci Polym Ed ; 24(11): 1291-304, 2013.
Article in English | MEDLINE | ID: mdl-23796031

ABSTRACT

Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from [Formula: see text] = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application.


Subject(s)
Acrylamides/chemistry , Alkanesulfonates/chemistry , Bandages , Burns/therapy , Hydrogels/chemistry , Hydrogels/chemical synthesis , Polyethylene Glycols/chemistry , Absorption , Acrylamides/chemical synthesis , Acrylamides/pharmacokinetics , Acrylamides/pharmacology , Alkanesulfonates/chemical synthesis , Alkanesulfonates/pharmacokinetics , Alkanesulfonates/pharmacology , Animals , Cells, Cultured , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Hydrogels/pharmacokinetics , Hydrogels/pharmacology , Materials Testing , Mice , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/pharmacokinetics , Polymerization/radiation effects , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...