Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Plant Commun ; : 100984, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38845198

ABSTRACT

The soybean root system is complex. In addition to being composed of various cell types, the soybean root system includes the primary root, the lateral roots, and the nodule, an organ in which mutualistic symbiosis with the N-fixing rhizobia occurs. A mature soybean root nodule is characterized by a central infection zone where the atmospheric nitrogen is fixed and assimilated by the symbiont, resulting from the close cooperation between the plant cell and the bacteria. To date, the transcriptome of individual cells isolated from developing soybean nodules has been established, but the transcriptomic signatures of the cells of the mature soybean nodule have not yet been characterized. Applying single nucleus RNA-seq and Molecular CartographyTM technologies, we precisely characterized the transcriptomic signature of the soybean root and mature nodule cell types and revealed the co-existence of different sub-populations of B. diazoefficiens-infected cells in the mature soybean nodule including those actively involved in nitrogen fixation, and those engaged in senescence. The mining of the single cell-resolution nodule transcriptome atlas and associated gene co-expression network confirmed the role of known nodulation-related genes and identified new genes controlling the nodulation process. For instance, we functionally characterized the role of GmFWL3, a plasma membrane microdomain-associated protein controlling rhizobia infection. Our study reveals the unique cellular complexity of the mature soybean nodule and helps redefine the concept of cell types when considering the infection zone of the soybean nodule.

2.
J Am Chem Soc ; 146(19): 13676-13688, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693710

ABSTRACT

Peptide-receptor interactions play critical roles in a wide variety of physiological processes. Methods to link bioactive peptides covalently to unmodified receptors on the surfaces of living cells are valuable for studying receptor signaling, dynamics, and trafficking and for identifying novel peptide-receptor interactions. Here, we utilize peptide analogues bearing deactivated aryl diazonium groups for the affinity-driven labeling of unmodified receptors. We demonstrate that aryl diazonium-bearing peptide analogues can covalently label receptors on the surface of living cells using both the neurotensin and the glucagon-like peptide 1 receptor systems. Receptor labeling occurs in the complex environment of the cell surface in a sequence-specific manner. We further demonstrate the utility of this covalent labeling approach for the visualization of peptide receptors by confocal fluorescence microscopy and for the enrichment and identification of labeled receptors by mass spectrometry-based proteomics. Aryl diazonium-based affinity-driven receptor labeling is attractive due to the high abundance of tyrosine and histidine residues susceptible to azo coupling in the peptide binding sites of receptors, the ease of incorporation of aryl diazonium groups into peptides, and the relatively small size of the aryl diazonium group. This approach should prove to be a powerful and relatively general method to study peptide-receptor interactions in cellular contexts.


Subject(s)
Diazonium Compounds , Diazonium Compounds/chemistry , Humans , Receptors, Peptide/metabolism , Receptors, Peptide/chemistry , Peptides/chemistry , Peptides/metabolism , Animals
3.
J Proteome Res ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648199

ABSTRACT

The expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.

4.
Front Plant Sci ; 14: 1260429, 2023.
Article in English | MEDLINE | ID: mdl-38089794

ABSTRACT

Spaceflight presents a unique environment with complex stressors, including microgravity and radiation, that can influence plant physiology at molecular levels. Combining transcriptomics and proteomics approaches, this research gives insights into the coordination of transcriptome and proteome in Arabidopsis' molecular and physiological responses to Spaceflight environmental stress. Arabidopsis seedlings were germinated and grown in microgravity (µg) aboard the International Space Station (ISS) in NASA Biological Research in Canisters - Light Emitting Diode (BRIC LED) hardware, with the ground control established on Earth. At 10 days old, seedlings were frozen in RNA-later and returned to Earth. RNA-seq transcriptomics and TMT-labeled LC-MS/MS proteomic analysis of cellular fractionates from the plant tissues suggest the alteration of the photosynthetic machinery (PSII and PSI) in spaceflight, with the plant shifting photosystem core-regulatory proteins in an organ-specific manner to adapt to the microgravity environment. An overview of the ribosome, spliceosome, and proteasome activities in spaceflight revealed a significant abundance of transcripts and proteins involved in protease binding, nuclease activities, and mRNA binding in spaceflight, while those involved in tRNA binding, exoribonuclease activity, and RNA helicase activity were less abundant in spaceflight. CELLULOSE SYNTHASES (CESA1, CESA3, CESA5, CESA7) and CELLULOSE-LIKE PROTEINS (CSLE1, CSLG3), involved in cellulose deposition and TUBULIN COFACTOR B (TFCB) had reduced abundance in spaceflight. This contrasts with the increased expression of UDP-ARABINOPYRANOSE MUTASEs, involved in the biosynthesis of cell wall non-cellulosic polysaccharides, in spaceflight. Both transcripts and proteome suggested an altered polar auxin redistribution, lipid, and ionic intracellular transportation in spaceflight. Analyses also suggest an increased metabolic energy requirement for plants in Space than on Earth, hence, the activation of several shunt metabolic pathways. This study provides novel insights, based on integrated RNA and protein data, on how plants adapt to the spaceflight environment and it is a step further at achieving sustainable crop production in Space.

5.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834079

ABSTRACT

Switchgrass (Panicum virgatum L.) can be infected by the rust pathogen (Puccinia novopanici) and results in lowering biomass yields and quality. Label-free quantitative proteomics was conducted on leaf extracts harvested from non-infected and infected plants from a susceptible cultivar (Summer) at 7, 11, and 18 days after inoculation (DAI) to follow the progression of disease and evaluate any plant compensatory mechanisms to infection. Some pustules were evident at 7 DAI, and their numbers increased with time. However, fungal DNA loads did not appreciably change over the course of this experiment in the infected plants. In total, 3830 proteins were identified at 1% false discovery rate, with 3632 mapped to the switchgrass proteome and 198 proteins mapped to different Puccinia proteomes. Across all comparisons, 1825 differentially accumulated switchgrass proteins were identified and subjected to a STRING analysis using Arabidopsis (A. thaliana L.) orthologs to deduce switchgrass cellular pathways impacted by rust infection. Proteins associated with plastid functions and primary metabolism were diminished in infected Summer plants at all harvest dates, whereas proteins associated with immunity, chaperone functions, and phenylpropanoid biosynthesis were significantly enriched. At 18 DAI, 1105 and 151 proteins were significantly enriched or diminished, respectively. Many of the enriched proteins were associated with mitigation of cellular stress and defense.


Subject(s)
Basidiomycota , Panicum , Puccinia , Proteome/metabolism , Panicum/genetics , Basidiomycota/genetics
6.
J Nanobiotechnology ; 21(1): 352, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770932

ABSTRACT

BACKGROUND: Macrophages are highly plastic innate immune cells that play key roles in host defense, tissue repair, and homeostasis maintenance. In response to divergent stimuli, macrophages rapidly alter their functions and manifest a wide polarization spectrum with two extremes: M1 or classical activation and M2 or alternative activation. Extracellular vesicles (EVs) secreted from differentially activated macrophages have been shown to have diverse functions, which are primarily attributed to their microRNA cargos. The role of protein cargos in these EVs remains largely unexplored. Therefore, in this study, we focused on the protein cargos in macrophage-derived EVs. RESULTS: Naïve murine bone marrow-derived macrophages were treated with lipopolysaccharide or interlukin-4 to induce M1 or M2 macrophages, respectively. The proteins of EVs and their parental macrophages were subjected to quantitative proteomics analyses, followed by bioinformatic analyses. The enriched proteins of M1-EVs were involved in proinflammatory pathways and those of M2-EVs were associated with immunomodulation and tissue remodeling. The signature proteins of EVs shared a limited subset of the proteins of their respective progenitor macrophages, but they covered many of the typical pathways and functions of their parental cells, suggesting their respective M1-like and M2-like phenotypes and functions. Experimental examination validated that protein cargos in M1- or M2-EVs induced M1 or M2 polarization, respectively. More importantly, proteins in M1-EVs promoted viability, proliferation, and activation of T lymphocytes, whereas proteins in M2-EVs potently protected the tight junction structure and barrier integrity of epithelial cells from disruption. Intravenous administration of M2-EVs in colitis mice led to their accumulation in the colon, alleviation of colonic inflammation, promotion of M2 macrophage polarization, and improvement of gut barrier functions. Protein cargos in M2-EVs played a key role in their protective function in colitis. CONCLUSION: This study has yielded a comprehensive unbiased dataset of protein cargos in macrophage-derived EVs, provided a systemic view of their potential functions, and highlighted the important engagement of protein cargos in the pathophysiological functions of these EVs.


Subject(s)
Colitis , Extracellular Vesicles , Animals , Mice , Macrophages/metabolism , Phagocytosis , Extracellular Vesicles/metabolism , Colitis/metabolism , Inflammation/metabolism
7.
Cells ; 12(15)2023 08 04.
Article in English | MEDLINE | ID: mdl-37566077

ABSTRACT

Multi-omics has the promise to provide a detailed molecular picture of biological systems. Although obtaining multi-omics data is relatively easy, methods that analyze such data have been lagging. In this paper, we present an algorithm that uses probabilistic graph representations and external knowledge to perform optimal structure learning and deduce a multifarious interaction network for multi-omics data from a bacterial community. Kefir grain, a microbial community that ferments milk and creates kefir, represents a self-renewing, stable, natural microbial community. Kefir has been shown to have a wide range of health benefits. We obtained a controlled bacterial community using the two most abundant and well-studied species in kefir grains: Lentilactobacillus kefiri and Lactobacillus kefiranofaciens. We applied growth temperatures of 30 °C and 37 °C and obtained transcriptomic, metabolomic, and proteomic data for the same 20 samples (10 samples per temperature). We obtained a multi-omics interaction network, which generated insights that would not have been possible with single-omics analysis. We identified interactions among transcripts, proteins, and metabolites, suggesting active toxin/antitoxin systems. We also observed multifarious interactions that involved the shikimate pathway. These observations helped explain bacterial adaptation to different stress conditions, co-aggregation, and increased activation of L. kefiranofaciens at 37 °C.


Subject(s)
Cultured Milk Products , Cultured Milk Products/microbiology , Multiomics , Proteomics , Bacteria/genetics
8.
Mol Plant Microbe Interact ; 36(8): 478-488, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36853197

ABSTRACT

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most devastating diseases of wheat and barley worldwide. Effectors suppress host immunity and promote disease development. The genome of F. graminearum contains hundreds of effectors with unknown function. Therefore, investigations of the functions of these effectors will facilitate developing novel strategies to enhance wheat resistance to FHB. We characterized a F. graminearum effector, FgNls1, containing a signal peptide and multiple eukaryotic nuclear localization signals. A fusion protein of green fluorescent protein and FgNls1 accumulated in plant cell nuclei when transiently expressed in Nicotiana benthamiana. FgNls1 suppressed Bax-induced cell death when co-expressed in N. benthamiana. We revealed that the expression of FgNLS1 was induced in wheat spikes infected with F. graminearum. The Fgnls1 mutants significantly reduced initial infection and FHB spread within a spike. The function of FgNLS1 was restored in the Fgnls1-complemented strains. Wheat histone 2B was identified as an interacting protein by FgNls1-affinity chromatography. Furthermore, transgenic wheat plants that silence FgNLS1 expression had significantly lower FHB severity than control plants. This study demonstrates a critical role of FgNls1 in F. graminearum pathogenesis and indicates that host-induced gene silencing targeting F. graminearum effectors is a promising approach to enhance FHB resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fusarium , Fusarium/genetics , Triticum/genetics , Plants, Genetically Modified , Cell Nucleus , Plant Diseases
9.
BMC Plant Biol ; 22(1): 433, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36076172

ABSTRACT

BACKGROUND: Access to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited. RESULTS: Here we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated with yield under high and low nitrogen conditions. CONCLUSION: Our results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such model.


Subject(s)
Sorghum , Edible Grain/genetics , Genotype , Nitrogen/metabolism , Phenotype , Sorghum/genetics , Sorghum/metabolism
10.
Plant Sci ; 320: 111289, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35643611

ABSTRACT

Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA.


Subject(s)
Aphids , Saccharum , Sorghum , Animals , Aphids/physiology , Edible Grain , Proteome , Sorghum/genetics
11.
Elife ; 112022 06 17.
Article in English | MEDLINE | ID: mdl-35713400

ABSTRACT

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals-involving cooperation between stem cell factor (SCF)/Kit signaling and other signaling inputs-are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the sterile alpha motif (SAM) domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14's role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and ß-heterodimers of the F-actin capping protein (CP) complex. Knockdown of the CP ß subunit increased erythroid maturation in murine ex vivo cultures and decreased colony forming potential of stress erythroid precursors. In a genetic complementation assay for Samd14 activity, our results revealed that the Samd14-CP interaction is a determinant of erythroid precursor cell levels and function. Samd14-CP promotes SCF/Kit signaling in CD71med spleen erythroid precursors. Given the roles of Kit signaling in hematopoiesis and Samd14 in Kit pathway activation, this mechanism may have pathological implications in acute/chronic anemia.


Anemia is a condition in which the body has a shortage of healthy red blood cells to carry enough oxygen to support its organs. A range of factors are known to cause anemia, including traumatic blood loss, toxins or nutritional deficiency. An estimated one-third of all women of reproductive age are anemic, which can cause tiredness, weakness and shortness of breath. Severe anemia drives the release of hormones and growth factors, leading to a rapid regeneration of precursor red blood cells to replenish the supply in the blood. To understand how red blood cell regeneration is controlled, Ray et al. studied proteins involved in regenerating blood using mice in which anemia had been induced with chemicals. Previous research had shown that the protein Samd14 is produced at higher quantities in individuals with anemia, and is involved with the recovery of lost red blood cells. However, it is not known how the Samd14 protein plays a role in regenerating blood cells, or whether Samd14 interacts with other proteins required for red blood cell production. To shed light on these questions, mouse cells exposed to anemia conditions were used to see what proteins Samd14 binds to. Purifying Samd14 revealed that it interacts with the actin capping protein. This interaction relies on a specific region of Samd14 that is similar to regions in other proteins that bind capping proteins. Ray et al. found that the interaction between Samd14 and the actin capping protein increased the signals needed for the development and survival of new red blood cells. These results identify a signaling mechanism that, if disrupted, could cause anemia to develop. They lead to a better understanding of how our bodies recover from anemia, and potential avenues to treat this condition.


Subject(s)
Anemia , Erythropoiesis , Animals , Cell Differentiation , Erythrocytes , Erythroid Precursor Cells/metabolism , Erythropoiesis/physiology , Mice , Proteins/metabolism
12.
J Food Biochem ; 45(12): e14004, 2021 12.
Article in English | MEDLINE | ID: mdl-34792196

ABSTRACT

Food processing can alter protein structure, modulate enzyme accessibility, and therefore the release of bioactive peptides. Thus, processing techniques, boiling, high-pressure processing (HPP), and a combination of both, were compared for their efficiency to release antioxidant peptides after alcalase hydrolysis of Great Northern Beans (GNBs). The oxygen radical absorbance capacity (ORAC) indicated that boiled hydrolysates had the highest antioxidant activity (370.9 ± 43.8 µmol TEAC/g). Mass spectrometry-based analysis suggested that di- and tri-peptide expression were significantly altered among the three treatments, and either Ile, Leu, Phe, and Arg containing peptides potentially contributed toward the enhanced antioxidant activity. Furthermore, the total phenolic content of the HPP-treated hydrolysate was higher than the other two treatments, with ferulic acid being the most prominent phenolic compound present in the bean hydrolysates. This study indicates that thermal processing such as boiling is more effective in modulating the release of antioxidant peptides. PRACTICAL APPLICATIONS: Common beans (Phaseolus vulgaris), such as Great Northern Beans (GNBs) are one of the major pulse crops in the United States. Storage proteins in beans can release peptides with biological activities after enzymatic hydrolysis. However, processing conditions can modulate the release of peptides. The present study is primarily focused on comparing the two processing methods, boiling and HPP, and their combination for the generation of peptides with potential antioxidant activity in alcalase-digested GNBs. Data from the study suggest that thermal treatment such as boiling is more effective in modulating the release of peptides from alcalase hydrolysate of GNBs with antioxidant activity. This is particularly important because over different cultures around the world, boiling is the most widely used processing method for the cooking of beans, and hence, these data also ensure that boiling is the most effective method in getting the most beneficial effects from the consumption of beans.


Subject(s)
Phaseolus , Antioxidants/pharmacology , Phenols , Protein Hydrolysates , Subtilisins
13.
Theranostics ; 11(19): 9311-9330, 2021.
Article in English | MEDLINE | ID: mdl-34646372

ABSTRACT

Aberrant activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome drives the development of many complex inflammatory diseases, such as obesity, Alzheimer's disease, and atherosclerosis. However, no medications specifically targeting the NLRP3 inflammasome have become clinically available. Therefore, we aim to identify new inhibitors of the NLRP3 inflammasome in this study. Methods: Vesicle-like nanoparticles (VLNs) were extracted from garlic chives and other Allium vegetables and their effects on the NLRP3 inflammasome were evaluated in primary macrophages. After garlic chive-derived VLNs (GC-VLNs) were found to exhibit potent anti-NLRP3 inflammasome activity in cell culture, such function was further assessed in a murine acute liver injury disease model, as well as in diet-induced obesity. Finally, GC-VLNs were subjected to omics analysis to identify the active components with anti-NLRP3 inflammasome function. Results: GC-VLNs are membrane-enclosed nanoparticles containing lipids, proteins, and RNAs. They dose-dependently inhibit pathways downstream of NLRP3 inflammasome activation, including caspase-1 autocleavage, cytokine release, and pyroptotic cell death in primary macrophages. The inhibitory effects of GC-VLNs on the NLRP3 inflammasome are specific, considering their marginal impact on activation of other inflammasomes. Local administration of GC-VLNs in mice alleviates NLRP3 inflammasome-mediated inflammation in chemical-induced acute liver injury. When administered orally or intravenously, GC-VLNs accumulate in specific tissues and suppress activation of the NLRP3 inflammasome and chronic inflammation in diet-induced obese mice. The phospholipid 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) in GC-VLNs has been identified to inhibit NLRP3 inflammasome activation. Conclusions: Identification of GC-VLNs and their active component DLPC as potent inflammasome inhibitors provides new therapeutic candidates in the treatment of NLRP3 inflammasome-driven diseases.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Plant Extracts/pharmacology , Animals , Antioxidants/pharmacology , China , Chive/metabolism , Cytokines/metabolism , Drug Evaluation, Preclinical/methods , Extracellular Vesicles/metabolism , Garlic/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nanoparticles/chemistry , Obesity , Phagocytosis
14.
Bioorg Med Chem Lett ; 43: 128061, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33895280

ABSTRACT

Cyclin-dependent kinase 9 (CDK9) is a member of the cyclin-dependent kinase (CDK) family which is involved in transcriptional regulation of several genes, including the oncogene Myc, and is a validated target for pancreatic cancer. Here we report the development of an aminopyrazole based proteolysis targeting chimera (PROTAC 2) that selectively degrades CDK9 (DC50 = 158 ± 6 nM). Mass spectrometry-based kinome profiling shows PROTAC 2 selectively degrades CDK9 in MiaPaCa2 cells and sensitizes them to Venetoclax mediated growth inhibition.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 9/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Proteolysis/drug effects , Pyrazoles/chemistry , Structure-Activity Relationship , Sulfonamides/pharmacology
15.
Emerg Top Life Sci ; 5(2): 189-201, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33704399

ABSTRACT

Untargeted metabolomics enables the identification of key changes to standard pathways, but also aids in revealing other important and possibly novel metabolites or pathways for further analysis. Much progress has been made in this field over the past decade and yet plant metabolomics seems to still be an emerging approach because of the high complexity of plant metabolites and the number one challenge of untargeted metabolomics, metabolite identification. This final and critical stage remains the focus of current research. The intention of this review is to give a brief current state of LC-MS based untargeted metabolomics approaches for plant specific samples and to review the emerging solutions in mass spectrometer hardware and computational tools that can help predict a compound's molecular structure to improve the identification rate.


Subject(s)
Systems Biology , Tandem Mass Spectrometry , Chromatography, Liquid , Metabolome , Metabolomics
16.
J Extracell Vesicles ; 10(4): e12069, 2021 02.
Article in English | MEDLINE | ID: mdl-33613874

ABSTRACT

Honey has been used as a nutrient, an ointment, and a medicine worldwide for many centuries. Modern research has demonstrated that honey has many medicinal properties, reflected in its anti-microbial, anti-oxidant, and anti-inflammatory bioactivities. Honey is composed of sugars, water and a myriad of minor components, including minerals, vitamins, proteins and polyphenols. Here, we report a new bioactive component‒vesicle-like nanoparticles‒in honey (H-VLNs). These H-VLNs are membrane-bound nano-scale particles that contain lipids, proteins and small-sized RNAs. The presence of plant-originated plasma transmembrane proteins and plasma membrane-associated proteins suggests the potential vesicle-like nature of these particles. H-VLNs impede the formation and activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome, which is a crucial inflammatory signalling platform in the innate immune system. Intraperitoneal administration of H-VLNs in mice alleviates inflammation and liver damage in the experimentally induced acute liver injury. miR-4057 in H-VLNs was identified in inhibiting NLRP3 inflammasome activation. Together, our studies have identified anti-inflammatory VLNs as a new bioactive agent in honey.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Honey/analysis , Inflammasomes/metabolism , Inflammation/metabolism , MicroRNAs/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nanoparticles/chemistry , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Bees/metabolism , Cells, Cultured , Disease Models, Animal , Extracellular Vesicles/chemistry , Immunity, Innate , Insect Proteins/analysis , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Nanoparticles/ultrastructure , Plant Proteins/analysis , Proteomics , Signal Transduction
17.
J Lipid Res ; 62: 100049, 2021.
Article in English | MEDLINE | ID: mdl-33617872

ABSTRACT

Lipid droplets (LDs) are composed of neutral lipids enclosed in a phospholipid monolayer, which harbors membrane-associated proteins that regulate LD functions. Despite the crucial role of LDs in lipid metabolism, remodeling of LD protein composition in disease contexts, such as steatosis, remains poorly understood. We hypothesized that chronic ethanol consumption, subsequent abstinence from ethanol, or fasting differentially affects the LD membrane proteome content and that these changes influence how LDs interact with other intracellular organelles. Here, male Wistar rats were pair-fed liquid control or ethanol diets for 6 weeks, and then, randomly chosen animals from both groups were either refed a control diet for 7 days or fasted for 48 h before euthanizing. From all groups, LD membrane proteins from purified liver LDs were analyzed immunochemically and by MS proteomics. Liver LD numbers and sizes were greater in ethanol-fed rats than in pair-fed control, 7-day refed, or fasted rats. Compared with control rats, ethanol feeding markedly altered the LD membrane proteome, enriching LD structural perilipins and proteins involved in lipid biosynthesis, while lowering LD lipase levels. Ethanol feeding also lowered LD-associated mitochondrial and lysosomal proteins. In 7-day refed (i.e., ethanol-abstained) or fasted-ethanol-fed rats, we detected distinct remodeling of the LD proteome, as judged by lower levels of lipid biosynthetic proteins, and enhanced LD interaction with mitochondria and lysosomes. Our study reveals evidence of significant remodeling of the LD membrane proteome that regulates ethanol-induced steatosis, its resolution after withdrawal and abstinence, and changes in LD interactions with other intracellular organelles.


Subject(s)
Lipid Droplets
18.
Antioxidants (Basel) ; 9(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187320

ABSTRACT

The study aimed to analyze pH and heat treatment's effect in modulating the release of peptides with antioxidant activity after simulated gastrointestinal (GI) digestion of Egg white powder (EWP). EWP samples with neutral (EWPN) and alkaline (EWPA) pH were heat-treated at 20, 60, and 90 °C and analyzed for protein aggregation, solubility, and GI digestibility. Heat treatment decreased solubility and induced protein aggregation, which was higher for EWPN as compared to EWPA. The unfolding of EWPA proteins at 60 °C exhibited a higher GI digestibility and antioxidant activity via Oxygen Radical Absorbance Capacity (ORAC) assay as compared to EWPN. Interestingly, a reverse trend was observed in the cellular antioxidant assay, and the GI-digest of EWPN exhibited a higher antioxidant activity. The LC-MS/MS analysis are in concordance with cellular antioxidant activity assay and showed a higher intensity for peptides with potential antioxidant activity in the GI-digest of EWPN. The results indicate that heat treatment but not the pH is a critical factor in improving the protein digestibility and releasing peptides with antioxidant activity after GI digestion.

19.
Sci Rep ; 10(1): 14842, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908168

ABSTRACT

Switchgrass (Panicum virgatum L.) is an important crop for biofuel production but it also serves as host for greenbugs (Schizaphis graminum Rondani; GB). Although transcriptomic studies have been done to infer the molecular mechanisms of plant defense against GB, little is known about the effect of GB infestation on the switchgrass protein expression and phosphorylation regulation. The global response of the switchgrass cultivar Summer proteome and phosphoproteome was monitored by label-free proteomics shotgun in GB-infested and uninfested control plants at 10 days post infestation. Peptides matching a total of 3,594 proteins were identified and 429 were differentially expressed proteins in GB-infested plants relative to uninfested control plants. Among these, 291 and 138 were up and downregulated by GB infestation, respectively. Phosphoproteome analysis identified 310 differentially phosphorylated proteins (DP) from 350 phosphopeptides with a total of 399 phosphorylated sites. These phosphopeptides had more serine phosphorylated residues (79%), compared to threonine phosphorylated sites (21%). Overall, KEGG pathway analysis revealed that GB feeding led to the enriched accumulation of proteins important for biosynthesis of plant defense secondary metabolites and repressed the accumulation of proteins involved in photosynthesis. Interestingly, defense modulators such as terpene synthase, papain-like cysteine protease, serine carboxypeptidase, and lipoxygenase2 were upregulated at the proteome level, corroborating previously published transcriptomic data.


Subject(s)
Aphids , Herbivory , Panicum/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Animals , Gene Expression Regulation, Plant , Phosphorylation , Photosynthesis , Transcriptome
20.
J Exp Bot ; 71(19): 5880-5895, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32667993

ABSTRACT

Opaque kernels in maize may result from mutations in many genes, such as OPAQUE-2. In this study, a maize null mutant of RNA-DIRECTED DNA METHYLATION 4 (RDM4) showed an opaque kernel phenotype, as well as plant developmental delay, male sterility, and altered response to cold stress. We found that in opaque kernels, all zein proteins were reduced and amino acid content was changed, including increased lysine. Transcriptomic and proteomic analysis confirmed the zein reduction and proteomic rebalancing of non-zein proteins, which was quantitatively and qualitatively different from opaque-2. Global transcriptional changes were found in endosperm and leaf, including many transcription factors and tissue-specific expressed genes. Furthermore, of the more than 8000 significantly differentially expressed genes in wild type in response to cold, a significant proportion (25.9% in moderate cold stress and 40.8% in near freezing stress) were not differentially expressed in response to cold in rdm4, suggesting RDM4 may participate in regulation of abiotic stress tolerance. This initial characterization of maize RDM4 provides a basis for further investigating its function in endosperm and leaf, and as a regulator of normal and stress-responsive development.


Subject(s)
Zea mays , Zein , DNA Methylation , Endosperm/genetics , Endosperm/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics , RNA , Zea mays/genetics , Zea mays/metabolism , Zein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...