Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 11330, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31383917

ABSTRACT

We have theoretically confirmed the existence of in-gap real quantum-mechanical states in SmB6, which have been suggested by experiments. These in-gap states, below the hybridization gap of 20 meV, are related to the Sm2+ ion states and can be revealed by calculations within the spin-orbital |LSLzSz〉 space, with L = 3 and S = 3. Our approach overcomes difficulties related to the singlet J = 0 multiplet ground state. The in-gap states originate from the 49-fold degenerated term 7F (4f 6), which is split by cubic crystal-field (CEF) and spin-orbit (s - o) interactions. There is competition between these interactions: the six-order CEF interactions produce a 7-fold degenerated ground state, whereas the s - o interactions, even the weakest one, produce a singlet (J = 0) ground state. We have found preliminary CEF and s - o parameters that produce the lowest states at 0 K (singlet) and 91 K (triplet) and the next triplet at 221 K, i.e., within the hybridization gap. The derived states well explain the large extra specific heat of SmB6, confirming the consistency and adequateness of our theoretical approach with the breakdown of the strong multiplet description of the Sm2+ ion in SmB6.

SELECTION OF CITATIONS
SEARCH DETAIL
...