Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069355

ABSTRACT

This review summarizes the currently known biochemical neuroadaptive mechanisms of remote ischemic conditioning. In particular, it focuses on the significance of the pro-adaptive effects of remote ischemic conditioning which allow for the prevention of the neurological and cognitive impairments associated with hippocampal dysregulation after brain damage. The neuroimmunohumoral pathway transmitting a conditioning stimulus, as well as the molecular basis of the early and delayed phases of neuroprotection, including anti-apoptotic, anti-oxidant, and anti-inflammatory components, are also outlined. Based on the close interplay between the effects of ischemia, especially those mediated by interaction of hypoxia-inducible factors (HIFs) and steroid hormones, the involvement of the hypothalamic-pituitary-adrenocortical system in remote ischemic conditioning is also discussed.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Postconditioning , Humans , Brain Ischemia/metabolism , Ischemia , Hippocampus/metabolism , Antioxidants
2.
Front Neurosci ; 16: 941740, 2022.
Article in English | MEDLINE | ID: mdl-35801184

ABSTRACT

This review is devoted to the phenomenon of intermittent hypoxic training and is aimed at drawing the attention of researchers to the necessity of studying the mechanisms mediating the positive, particularly neuroprotective, effects of hypoxic training at the molecular level. The review briefly describes the historical aspects of studying the beneficial effects of mild hypoxia, as well as the use of hypoxic training in medicine and sports. The physiological mechanisms of hypoxic adaptation, models of hypoxic training and their effectiveness are summarized, giving examples of their beneficial effects in various organs including the brain. The review emphasizes a high, far from being realized at present, potential of hypoxic training in preventive and clinical medicine especially in the area of neurodegeneration and age-related cognitive decline.

3.
Nutrients ; 14(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35406012

ABSTRACT

The protective effects of recombinant human lactoferrin rhLF (branded "CAPRABEL™") on the cognitive functions of rat offspring subjected to prenatal hypoxia (7% O2, 3 h, 14th day of gestation) have been analyzed. About 90% of rhLF in CAPRABEL was iron-free (apo-LF). Rat dams received several injections of 10 mg of CAPRABEL during either gestation (before and after the hypoxic attack) or lactation. Western blotting revealed the appearance of erythropoietin (EPO) alongside the hypoxia-inducible factors (HIFs) in organ homogenates of apo-rhLF-treated pregnant females, their embryos (but not placentas), and in suckling pups from the dams treated with apo-rhLF during lactation. Apo-rhLF injected to rat dams either during pregnancy or nurturing the pups was able to rescue cognitive deficits caused by prenatal hypoxia and improve various types of memory both in young and adult offspring when tested in the radial maze and by the Novel Object Recognition (NOR) test. The data obtained suggested that the apo-form of human LF injected to female rats during gestation or lactation protects the cognitive functions of their offspring impaired by prenatal hypoxia.


Subject(s)
Erythropoietin , Lactoferrin , Animals , Cognition , Erythropoietin/metabolism , Erythropoietin/pharmacology , Female , Hypoxia/complications , Hypoxia/drug therapy , Pregnancy , Rats , Recombinant Proteins/pharmacology , Vitamins
4.
J Mol Neurosci ; 72(7): 1516-1526, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35344141

ABSTRACT

Development of the olfactory system begins early in embryogenesis and is important for the survival of new-borns in postnatal life. Olfactory malfunction in early life disrupts development of behavioural patterns while with ageing manifests development of neurodegenerative disorders. Previously, we have shown that prenatal hypoxia in rats leads to impaired olfaction in the offspring and correlates with reduced expression of a neuropeptidase neprilysin (NEP) in the brain structures involved in processing of the olfactory stimuli. Prenatal hypoxia also resulted in an increased activity of caspases in rat brain and its inhibition restored NEP content in the brain tissue and improved rat memory. In this study, we have analysed effects of intraventricular administration of a caspase inhibitor Ac-DEVD-CHO on NEP mRNA expression, the number of dendritic spines and olfactory function of rats subjected to prenatal hypoxia on E14. The data obtained demonstrated that a single injection of the inhibitor on P20 restored NEP mRNA levels and number of dendritic spines in the entorhinal and parietal cortices, hippocampus and rescued rat olfactory function in food search and odour preference tests. The data obtained suggest that caspase activation caused by prenatal hypoxia contributes to the olfactory dysfunction in developing animals and that caspase inhibition restores the olfactory deficit via upregulating NEP expression and neuronal networking. Because NEP is a major amyloid-degrading enzyme, any decrease in its expression and activity not only impairs brain functions but also predisposes to accumulation of the amyloid-ß peptide and development of neurodegeneration characteristic of Alzheimer's disease.


Subject(s)
Caspase Inhibitors , Hypoxia , Neprilysin , Olfaction Disorders , Animals , Caspase Inhibitors/pharmacology , Caspases , Female , Hypoxia/complications , Neprilysin/genetics , Neprilysin/metabolism , Olfaction Disorders/etiology , Pregnancy , RNA, Messenger/genetics , Rats
5.
Peptides ; 151: 170766, 2022 05.
Article in English | MEDLINE | ID: mdl-35151768

ABSTRACT

Angiotensin-converting enzyme-2, or ACE2, is primarily a zinc-dependent peptidase and ectoenzyme expressed in numerous cell types and functioning as a counterbalance to ACE in the renin-angiotensin system. It was discovered 21 years ago more than 40 years after the discovery of ACE itself. Its primary physiological activity is believed to be in the conversion of angiotensin II to the vasodilatory angiotensin-(1-7) acting through the Mas receptor. As such it has been implicated in numerous pathological conditions, largely in a protective mode which has led to the search for ACE2 activatory mechanisms. ACE2 has a diverse substrate specificity allowing its participation in multiple peptide pathways. It also regulates aspects of amino acid transport through its homology with a membrane protein, collectrin. It also serves as a viral receptor for the SARS virus, and subsequently SARS-CoV2, driving the current COVID-19 pandemic. ACE2 therefore provides a therapeutic target for the treatment of COVID and understanding the biological events following viral binding can provide insight into the multiple pathologies caused by the virus, particularly inflammatory and vascular. In part this may relate to the ability of ACE2, like ACE, to be shed from the cell membrane. The shed form of ACE2 (sACE2) may be a factor in determining susceptibility to certain COVID pathologies. Hence, for just over 20 years, ACE2 has provided numerous surprises in the field of vasoactive peptides with, no doubt, more to come but it is its central role in COVID pathology that is producing the current intense interest in its biology.


Subject(s)
COVID-19 , Pandemics , Angiotensin-Converting Enzyme 2 , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Viral , Renin-Angiotensin System/physiology , SARS-CoV-2
7.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34360746

ABSTRACT

Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.


Subject(s)
Disease Resistance , Glucocorticoids/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypoxia, Brain/metabolism , Ischemic Preconditioning , Pituitary-Adrenal System/metabolism , Signal Transduction , Animals , Humans , Hypothalamo-Hypophyseal System/pathology , Hypoxia, Brain/prevention & control , Pituitary-Adrenal System/pathology
8.
Biochemistry (Mosc) ; 86(6): 680-692, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34225591

ABSTRACT

The incidence of Alzheimer's disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic amyloid species and brain damage. The effects of global 15-min ischemia and 120-min reperfusion on the levels of expression of the amyloid precursor protein (APP) and its processing were investigated in the brain cortex (Cx) of male Wistar rats. Additionally, the levels of expression of the amyloid-degrading enzymes neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), and insulin-degrading enzyme (IDE), as well as of some markers of oxidative damage were assessed. It was shown that the APP mRNA and protein levels in the rat Cx were significantly increased after the ischemic insult. Protein levels of the soluble APP fragments, especially of sAPPß produced by ß-secretase, (BACE-1) and the levels of BACE-1 mRNA and protein expression itself were also increased after ischemia. The protein levels of APP and BACE-1 in the Cx returned to the control values after 120-min reperfusion. The levels of NEP and ECE-1 mRNA also decreased after ischemia, which correlated with the decreased protein levels of these enzymes. However, we have not observed any changes in the protein levels of insulin-degrading enzyme. Contents of the markers of oxidative damage (di-tyrosine and lysine conjugates with lipid peroxidation products) were also increased after ischemia. The obtained data suggest that ischemia shifts APP processing towards the amyloidogenic ß-secretase pathway and accumulation of the neurotoxic Aß peptide as well as triggers oxidative stress in the cells. These results are discussed in the context of the role of stress and ischemia in initiation and progression of AD.


Subject(s)
Alzheimer Disease/etiology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain Ischemia/metabolism , Cerebral Cortex/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Brain Ischemia/complications , Brain Ischemia/enzymology , Cerebral Cortex/enzymology , Endothelin-Converting Enzymes/genetics , Endothelin-Converting Enzymes/metabolism , Gene Expression Regulation , Insulysin/genetics , Insulysin/metabolism , Male , Neprilysin/genetics , Neprilysin/metabolism , Oxidative Stress , Rats , Rats, Wistar , Reperfusion Injury/complications , Reperfusion Injury/enzymology , Reperfusion Injury/metabolism
9.
J Mol Neurosci ; 71(9): 1772-1785, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33433852

ABSTRACT

A neuropeptidase, neprilysin (NEP), is a major amyloid (Aß)-degrading enzyme involved in the pathogenesis of Alzheimer's disease (AD). The olfactory system is affected early in AD with characteristic Aß accumulation, but data on the dynamics of NEP expression in the olfactory system are absent. Our study demonstrates that NEP mRNA expression in rat olfactory bulbs (OB), entorhinal cortex (ECx), hippocampus (Hip), parietal cortex (PCx) and striatum (Str) increases during the first postnatal month being the highest in the OB and Str. By 3 months, NEP mRNA levels sharply decrease in the ECx, Hip and PCx and by 9 months in the OB, but not in the Str, which correlates with declining olfaction in aged rats tested in the food search paradigm. One-month-old rats subjected to prenatal hypoxia on E14 had lower NEP mRNA levels in the ECx, Hip and PCx (but not in the OB and Str) compared with the control offspring and demonstrated impaired olfaction in the odour preference and food search paradigms. Administration to these rats of a histone deacetylase inhibitor, sodium valproate, restored NEP expression in the ECx, Hip and PCx and improved olfaction. Our data support NEP involvement in olfactory function.


Subject(s)
Neprilysin/metabolism , Olfactory Bulb/metabolism , Olfactory Perception , Smell , Animals , Behavior, Animal , Female , Male , Neprilysin/genetics , Neurogenesis , Olfactory Bulb/growth & development , Olfactory Bulb/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar
13.
Dev Neurosci ; 41(1-2): 56-66, 2019.
Article in English | MEDLINE | ID: mdl-30904914

ABSTRACT

Using electrocorticogram (ECoG) analysis, we compared age-related dynamics of general neuronal activity and convulsive epileptiform responsiveness induced by intracortical microinjections of 4-aminopyridine (4-AP) in control Wistar rats and those subjected to prenatal hypoxia (Hx; E14; 7% O2, 3 h). The studies were carried out in three age periods roughly corresponding to childhood (P20-27), adolescence (P30-45), and adulthood (P90-120). It was found that in the process of postnatal development of the control rats, the peak of the ECoG power spectrum density (PSD) of the theta rhythm during wakefulness shifted from the low to the higher frequency, while in the Hx rats this shift had the opposite direction. Moreover, the Hx rats had different frequency characteristics of the ECoG PSD and longer episodes of spike-and-wave discharges caused by 4-AP injections compared to the controls. The total ECoG PSD of slow-wave sleep (1-5 Hz) was also dramatically decreased in the process of development of the Hx rats. Such alterations in PSD could be explained by the changes in balance of the excitation and inhibition processes in the cortical networks. Analyzing protein levels of neurotransmitter transporters in the brain structures of the Hx rats, we found that the content of the glutamate transporter EAAT1 was higher in the parietal cortex in all age groups of Hx rats while in the hippocampus it decreased during postnatal development compared to controls. Furthermore, the content of the vesicular acetylcholine transporter in the parietal cortex, and of the inhibitory GABA transporter 1 in the hippocampus, was also affected by prenatal Hx. These data suggest that prenatal Hx results in a shift in the excitatory and inhibitory balance in the rat cortex towards excitation, making the rat's brain more vulnerable to the effects of proconvulsant drugs and predisposing animals to epileptogenesis during postnatal life.


Subject(s)
Fetal Hypoxia/metabolism , Fetal Hypoxia/physiopathology , Neurotransmitter Transport Proteins/metabolism , 4-Aminopyridine/toxicity , Animals , Convulsants/toxicity , Electrocorticography , Female , Potassium Channel Blockers/toxicity , Pregnancy , Rats , Rats, Wistar , Seizures/chemically induced , Seizures/physiopathology
14.
Br J Pharmacol ; 176(18): 3447-3463, 2019 09.
Article in English | MEDLINE | ID: mdl-30710367

ABSTRACT

Targeting the amyloid-ß (Aß) peptide cascade has been at the heart of therapeutic developments in Alzheimer's disease (AD) research for more than 25 years, yet no successful drugs have reached the marketplace based on this hypothesis. Nevertheless, the genetic and other evidence remains strong, if not overwhelming, that Aß is central to the disease process. Most attention has focused on the biosynthesis of Aß from its precursor protein through the successive actions of the ß- and γ-secretases leading to the development of inhibitors of these membrane proteases. However, the levels of Aß are maintained through a balance of its biosynthesis and clearance, which occurs both through further proteolysis by a family of amyloid-degrading enzymes (ADEs) and by a variety of transport processes. The development of late-onset AD appears to arise from a failure of these clearance mechanisms rather than by overproduction of the peptide. This review focuses on the nature of these clearance mechanisms, particularly the various proteases known to be involved, and their regulation and potential as therapeutic targets in AD drug development. The majority of the ADEs are zinc metalloproteases [e.g., the neprilysin (NEP) family, insulin-degrading enzyme, and angiotensin converting enzymes (ACE)]. Strategies for up-regulating the expression and activity of these enzymes, such as genetic, epigenetic, stem cell technology, and other pharmacological approaches, will be highlighted. Modifiable physiological mechanisms affecting the efficiency of Aß clearance, including brain perfusion, obesity, diabetes, and sleep, will also be outlined. These new insights provide optimism for future therapeutic developments in AD research. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Animals , Epigenesis, Genetic , Gene Transfer Techniques , Humans , Neurons , Sleep
15.
Front Neurosci ; 12: 825, 2018.
Article in English | MEDLINE | ID: mdl-30510498

ABSTRACT

This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-ß peptide (Aß). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aß clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aß accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.

17.
Curr Aging Sci ; 10(1): 32-40, 2017.
Article in English | MEDLINE | ID: mdl-27834125

ABSTRACT

The accumulation of cerebral amyloid ßpeptide (Aß) is a key precipitating factor for neuronal cell death in Alzheimer's Disease (AD). However, brain Aß levels are modifiable since there is a balance between its formation from the Amyloid Precursor Protein (APP) and its removal by clearance mechanisms, which can be either through proteolysis or by protein binding and subsequent transport). Among the major enzymes degrading brain Aß are several zinc-proteases: neprilysin (NEP), its homologues NEP2 and the Endothelin Converting Enzymes (ECE-1 and -2) and also the Insulin-Degrading Enzyme (IDE). During the ageing process, and under certain pathological conditions (e.g. ischemia and stroke), the expression and activity of these enzymes decline, which leads to a deficit of Aß clearance and its accumulation in the brain. Some of these changes in the enzyme properties are due to their reduced expression and/or structural modification by reactive oxygen species. In this review paper we shall discuss some mechanisms of regulation of Amyloid-Degrading Enzymes (ADEs) and possible therapeutic approaches which might prevent their decline with age and after pathology.


Subject(s)
Aging/metabolism , Amyloid beta-Peptides/metabolism , Nerve Degeneration/etiology , Nerve Degeneration/metabolism , Oxidative Stress , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain Ischemia/metabolism , Humans , Hypoxia, Brain/metabolism , Proteolysis
18.
J Neurochem ; 139 Suppl 2: 7-16, 2016 10.
Article in English | MEDLINE | ID: mdl-27534601

ABSTRACT

This review reflects on the origins, development, publishing trends, and scientific directions of the Journal of Neurochemistry over its 60 year lifespan as seen by key contributors to the Journal's production. The Journal first appeared in May 1956 with just two issues published in that inaugural year. By 1963, it appeared monthly and, by 2002, 24 hard copy issues were published yearly. In 2014, the Journal became online only. For much of its time, the Journal was managed through two separate editorial offices each with their respective Chief Editor (the 'Western' and 'Eastern' hemispheres). The Journal was restructured to operate through a single editorial office and Editor-in-Chief from 2013. Scientifically, the Journal progressed through distinct scientific eras with the first two decades generally centered around developments in methodology followed by a period when publications delved deeper into underlying mechanisms. By the late 1980s, the Journal had entered the age of genetics and beyond, with an increasing focus on neurodegenerative diseases. Reviews have played a regular part in the success of J Neurochem with focused special and virtual issues being a highlight of recent years. Today, 60 years and onwards, J Neurochem continues to be a leading source of top-quality, original and review articles in neuroscience. We look forward to its continued success at the forefront of neurochemistry in the decades to come. This article celebrates 60 years of publication of Journal of Neurochemistry including personal reminiscences from some of the Chief Editors, past and present, as well as input from some of the key contributors to the Journal over this period. We highlight the scientific, technological, and publishing developments along the way, with reference to key papers published in the Journal. The support of the Journal toward the aims and objectives of the International Society for Neurochemistry (ISN) is also emphasized. This article is part of the 60th Anniversary special issue.


Subject(s)
Editorial Policies , Neurochemistry/trends , Periodicals as Topic/trends , Humans , Neurochemistry/methods
19.
Chem Biol Interact ; 259(Pt B): 301-306, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27062894

ABSTRACT

The amyloid precursor protein (APP) and acetylcholinesterase (AChE) are multi-faceted proteins with a wide range of vital functions, both crucially linked with the pathogenesis of Alzheimer's disease (AD). APP is the precursor of the Aß peptide, the pathological agent in AD, while AChE is linked to its pathogenesis either by increasing cholinergic deficit or exacerbating Aß fibril formation and toxicity. As such, both proteins are the main targets in AD therapeutics with AChE inhibitors being currently the only clinically available AD drugs. In our studies we have demonstrated an important inter-relation in functioning of these proteins. Both can be released from the cell membrane and we have shown that AChE shedding involves a metalloproteinase-mediated mechanism which, like the α-secretase dependent cleavage of APP, is stimulated by cholinergic agonists. Overexpression of the neuronal specific isoform APP695 in neuronal cells substantially decreased levels of the AChE mRNA, protein and catalytic activity accompanied by a similar decrease in mRNA levels of the AChE membrane anchor, PRiMA (proline rich membrane anchor). We further established that this regulation does not involve APP processing and its intracellular domain (AICD) but requires the E1 region of APP, specifically its copper-binding domain. On the contrary, siRNA knock-down of APP in cholinergic SN56 cells resulted in a significant upregulation of AChE mRNA levels. Hence APP may influence AChE physiology while released AChE may regulate amyloidogenesis through multiple mechanisms suggesting novel therapeutic targets.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Signal Transduction , Humans , Models, Biological , Protein Isoforms/metabolism
20.
Neurochem Res ; 41(3): 620-30, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26376806

ABSTRACT

Currently, deficit of amyloid ß-peptide (Aß) clearance from the brain is considered as one of the possible causes of amyloid accumulation and neuronal death in the sporadic form of Alzheimer's disease (AD). Aß clearance can involve either specific proteases present in the brain or Aß-binding/transport proteins. Among amyloid-degrading enzymes the most intensively studied are neprilysin (NEP) and insulin-degrading enzyme (IDE). Since ageing and development of brain pathologies is often accompanied by a deficit in the levels of expression and activity of these enzymes in the brain, there is an urgent need to understand the mechanisms involved in their regulation. We have recently reported that NEP and also an Aß-transport protein, transthyretin are epigenetically co-regulated by the APP intracellular domain (AICD) and this regulation depends on the cell type and APP695 isoform expression in a process that can be regulated by the tyrosine kinase inhibitor, Gleevec. We have now extended our work and shown that, unlike NEP, another amyloid-degrading enzyme, IDE, is not related to over-expression of APP695 in neuroblastoma SH-SY5Y cells but is up-regulated by APP751 and APP770 isoforms independently of AICD but correlating with reduced HDAC1 binding to its promoter. Studying the effect of the nuclear retinoid X receptor agonist, bexarotene, on NEP and IDE expression, we have found that both enzymes can be up-regulated by this compound but this mechanism is not APP-isoform specific and does not involve AICD but, on the contrary, affects HDAC1 occupancy on the NEP gene promoter. These new insights into the mechanisms of NEP and IDE regulation suggest possible pharmacological targets in developing AD therapies.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Amyloid/metabolism , Epigenesis, Genetic , Insulysin/metabolism , Neprilysin/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Bexarotene , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Humans , Insulysin/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , RNA, Messenger/metabolism , Retinoid X Receptors/antagonists & inhibitors , Tetrahydronaphthalenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...