Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(52): e2311995120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38113266

ABSTRACT

Neurons in the brain communicate with each other at their synapses. It has long been understood that this communication occurs through biochemical processes. Here, we reveal that mechanical tension in neurons is essential for communication. Using in vitro rat hippocampal neurons, we find that 1) neurons become tout/tensed after forming synapses resulting in a contractile neural network, and 2) without this contractility, neurons fail to fire. To measure time evolution of network contractility in 3D (not 2D) extracellular matrix, we developed an ultrasensitive force sensor with 1 nN resolution. We employed Multi-Electrode Array and iGluSnFR, a glutamate sensor, to quantify neuronal firing at the network and at the single synapse scale, respectively. When neuron contractility is relaxed, both techniques show significantly reduced firing. Firing resumes when contractility is restored. This finding highlights the essential contribution of neural contractility in fundamental brain functions and has implications for our understanding of neural physiology.


Subject(s)
Neurons , Synapses , Rats , Animals , Neurons/physiology , Synapses/physiology , Hippocampus , Neural Networks, Computer , Brain/physiology , Action Potentials/physiology , Models, Neurological
2.
Small Methods ; 7(4): e2201181, 2023 04.
Article in English | MEDLINE | ID: mdl-36734194

ABSTRACT

Point accumulation for imaging in nanoscale topography (PAINT) is a single-molecule technique for super-resolution microscopy, which uses exchangeable single stranded DNA oligos or peptide-pairs to create blinking phenomenon and achieves ≈5-25 nanometer resolution. Here, it is shown that by transfecting the protein-of-interest with a docker-coil, rather than by adding the docker externally-as is the norm when using DNA tethers or antibodies as dockers-similar localization can be achieved, ≈10 nm. However, using a transfected docker has several experimental advances and simplifications. Most importantly, it allows Peptide-PAINT to be applied to transfected live cells for imaging surface proteins in mammalian cells and neurons under physiological conditions. The enhanced resolution of Peptide-PAINT is also shown for organelles in fixed cells to unravel structural details including ≈40-nm and ≈60-nm axial repeats in vimentin filaments in the cytoplasm, and fiber shapes of sub-100-nm histone-rich regions in the nucleus.


Subject(s)
DNA , Microscopy , Animals , DNA/genetics , DNA/chemistry , Nanotechnology/methods , Cell Nucleus , Peptides , Mammals
3.
ACS Nano ; 16(2): 1999-2012, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35107994

ABSTRACT

Macrophages are white blood cells with diverse functions contributing to a healthy immune response as well as the pathogenesis of cancer, osteoarthritis, atherosclerosis, and obesity. Due to their pleiotropic and dynamic nature, tools for imaging and tracking these cells at scales spanning the whole body down to microns could help to understand their role in disease states. Here we report fluorescent and radioisotopic quantum dots (QDs) for multimodal imaging of macrophage cells in vivo, ex vivo, and in situ. Macrophage specificity is imparted by click-conjugation to dextran, a biocompatible polysaccharide that natively targets these cell types. The emission spectral band of the crystalline semiconductor core was tuned to the near-infrared for optical imaging deep in tissue, and probes were covalently conjugated to radioactive iodine for nuclear imaging. The performance of these probes was compared with all-organic dextran probe analogues in terms of their capacity to target macrophages in visceral adipose tissue using in vivo positron emission tomography/computed tomography (PET/CT) imaging, in vivo fluorescence imaging, ex vivo fluorescence, post-mortem isotopic analyses, and optical microscopy. All probe classes exhibited equivalent physicochemical characteristics in aqueous solution and similar in vivo targeting specificity. However, dextran-mimetic QDs provided enhanced signal-to-noise ratio for improved optical quantification, long-term photostability, and resistance to chemical fixation. In addition, the vascular circulation time for the QD-based probes was extended 9-fold compared with dextran, likely due to differences in conformational flexibility. The enhanced photophysical and photochemical properties of dextran-mimetic QDs may accelerate applications in macrophage targeting, tracking, and imaging across broad resolution scales, particularly advancing capabilities in single-cell and single-molecule imaging and quantification.


Subject(s)
Quantum Dots , Thyroid Neoplasms , Dextrans , Humans , Iodine Radioisotopes , Macrophages , Optical Imaging , Positron Emission Tomography Computed Tomography , Quantum Dots/chemistry
4.
Front Mol Neurosci ; 13: 10, 2020.
Article in English | MEDLINE | ID: mdl-32231520

ABSTRACT

The post-synaptic density protein 95 (PSD-95) plays a central role in excitatory synapse development and synaptic plasticity. Phosphorylation of the N-terminus of PSD-95 at threonine 19 (T19) and serine 25 (S25) decreases PSD-95 stability at synapses; however, a molecular mechanism linking PSD-95 phosphorylation to altered synaptic stability is lacking. Here, we show that phosphorylation of T19/S25 recruits the phosphorylation-dependent peptidyl-prolyl cis-trans isomerase (Pin1) and reduces the palmitoylation of Cysteine 3 and Cysteine 5 in PSD-95. This reduction in PSD-95 palmitoylation accounts for the observed loss in the number of dendritic PSD-95 clusters, the increased AMPAR mobility, and the decreased number of functional excitatory synapses. We find the effects of Pin1 overexpression were all rescued by manipulations aimed at increasing the levels of PSD-95 palmitoylation. Therefore, Pin1 is a key signaling molecule that regulates the stability of excitatory synapses and may participate in the destabilization of PSD-95 following the induction of synaptic plasticity.

5.
J Am Chem Soc ; 142(7): 3449-3462, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31964143

ABSTRACT

Materials with short-wave infrared (SWIR) emission are promising contrast agents for in vivo animal imaging, providing high-contrast and high-resolution images of blood vessels in deep tissues. However, SWIR emitters have not been developed as molecular labels for microscopy applications in the life sciences, which require optimized probes that are bright, stable, and small. Here, we design and synthesize semiconductor quantum dots (QDs) with SWIR emission based on HgxCd1-xSe alloy cores red shifted to the SWIR by epitaxial deposition of thin HgxCd1-xS shells with a small band gap. By tuning alloy composition alone, the emission can be shifted across the visible-to-SWIR (VIR) spectra while maintaining a small and equal size, allowing direct comparisons of molecular labeling performance across a broad range of wavelength. After coating with click-functional multidentate polymers, the VIR-QD spectral series has high quantum yield in the SWIR (14-33%), compact size (13 nm hydrodynamic diameter), and long-term stability in aqueous media during continuous excitation. We show that these properties enable diverse applications of SWIR molecular probes for fluorescence microscopy using conjugates of antibodies, growth factors, and nucleic acids. A broadly useful outcome is a 10-55-fold enhancement of the signal-to-background ratio at both the single-molecule level and the ensemble level in the SWIR relative to visible wavelengths, primarily due to drastically reduced autofluorescence. We anticipate that VIR-QDs with SWIR emission will enable ultrasensitive molecular imaging of low-copy number analytes in biospecimens with high autofluorescence.


Subject(s)
Microscopy, Fluorescence/methods , Molecular Probes/chemistry , Quantum Dots/chemistry , Adipose Tissue/chemistry , Alloys/chemistry , Animals , Cadmium Compounds/chemistry , Cell Line, Tumor , Epidermal Growth Factor/metabolism , ErbB Receptors/analysis , ErbB Receptors/metabolism , Humans , Mice , Particle Size , Selenium Compounds/chemistry , Triple Negative Breast Neoplasms/chemistry , Triple Negative Breast Neoplasms/metabolism
7.
Elife ; 62017 07 27.
Article in English | MEDLINE | ID: mdl-28749340

ABSTRACT

Previous studies tracking AMPA receptor (AMPAR) diffusion at synapses observed a large mobile extrasynaptic AMPAR pool. Using super-resolution microscopy, we examined how fluorophore size and photostability affected AMPAR trafficking outside of, and within, post-synaptic densities (PSDs) from rats. Organic fluorescent dyes (≈4 nm), quantum dots, either small (≈10 nm diameter; sQDs) or big (>20 nm; bQDs), were coupled to AMPARs via different-sized linkers. We find that >90% of AMPARs labeled with fluorescent dyes or sQDs were diffusing in confined nanodomains in PSDs, which were stable for 15 min or longer. Less than 10% of sQD-AMPARs were extrasynaptic and highly mobile. In contrast, 5-10% of bQD-AMPARs were in PSDs and 90-95% were extrasynaptic as previously observed. Contrary to the hypothesis that AMPAR entry is limited by the occupancy of open PSD 'slots', our findings suggest that AMPARs rapidly enter stable 'nanodomains' in PSDs with lifetime >15 min, and do not accumulate in extrasynaptic membranes.


Subject(s)
Fluorescent Dyes/metabolism , Neurons/metabolism , Optical Imaging/methods , Post-Synaptic Density/metabolism , Receptors, AMPA/genetics , Synapses/metabolism , Animals , Embryo, Mammalian , Excitatory Postsynaptic Potentials/physiology , Fluorescent Dyes/chemistry , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/metabolism , Hippocampus/ultrastructure , Neurons/ultrastructure , Post-Synaptic Density/ultrastructure , Primary Cell Culture , Protein Transport , Quantum Dots/chemistry , Quantum Dots/metabolism , Rats , Receptors, AMPA/metabolism , Staining and Labeling/methods , Synapses/ultrastructure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...