Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Int J Biol Macromol ; 254(Pt 2): 127904, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939770

ABSTRACT

Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.


Subject(s)
Biosensing Techniques , Nanostructures , Neoplasms , Humans , Biosensing Techniques/methods , Immunoassay , Nanostructures/therapeutic use , Nanostructures/chemistry , Nanotechnology/methods , Pharmaceutical Preparations , Neoplasms/drug therapy , Neoplasms/diagnosis
2.
Chem Commun (Camb) ; 59(83): 12451-12454, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37781773

ABSTRACT

A novel one-pot surfactant-free synthesis is presented for designing bimetallic oxide-nitride electrocatalysts with tunable morphologies using metal salts and nitrogen-rich precursors. This innovative approach eliminates the need for a distinct nitridation process. Bifunctional electrode Co3O4/MoO3/MoxNy achieved a current density of 10 mA cm-2 while maintaining a cell voltage of 1.52 V, outperforming many bimetallic oxide-nitride catalysts in the scientific literature.

3.
Chemosphere ; 330: 138599, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37030342

ABSTRACT

Water pollution caused by industrial wastewater is the most critical environmental problem in the world. Synthetic dyes are commonly used in various industries such as paper, plastic, printing, leather and textile for their ability to impact color. Complex composition, high toxicity and low biodegradability of dyes make them difficult to degrade which causes a substantial negative impact on overall ecosystems. To address this issue we synthesized TiO2 fibers photocatalyst using the combination of sol-gel and electrospinning techniques to be used in the degradation of dyes which causes water pollution. We doped Fe in TiO2 fibers to enhance the absorption in the visible region of the solar spectrum which will also help to increase the degradation efficiency. As synthesized pristine TiO2 fibers and Fe doped TiO2 fibers were analyzed using different characterization techniques such as X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, UV-Visible spectroscopy, X-ray photoelectron spectroscopy. 5% Fe doped TiO2 fibers show excellent photocatalytic degradation activity for rhodamine B (99% degradation in 120 min). It can be utilized for degradation of other dye pollutants such as methylene blue, Congo red and methyl orange. It shows good photocatalytic activity (97%) even after 5 cycles of reuse. The radical trapping experiments reveals that holes, •O2- and •OH has a significant contribution in the photocatalytic degradation. Due to the robust fibrous nature of 5FeTOF the process of collection of photocatalysts was simple and without loss as compared to powder photocatalysts. This justifies our selection of electrospinning method of synthesis of 5FeTOF which is also useful for large scale production.


Subject(s)
Light , Water Purification , Ecosystem , Titanium/chemistry , Water Purification/methods , Coloring Agents/chemistry , Catalysis
4.
RSC Adv ; 11(27): 16823-16833, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-35479180

ABSTRACT

In this study, we constructed a highly effective, low-cost, non-noble-metal-based electrocatalyst to replace Pt catalysts, with a CoS@SNC catalyst being successfully synthesized. The obtained nanocatalyst was characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, powder X-ray diffraction studies, and X-ray photoelectron spectroscopy. Herein, an initially prepared N-containing Co MOF formed flower-like particles, which were obtained via a solvothermal method; further it was used for a sulfuration process as a template to achieve an S,N (heteroatom)-doped carbon electrocatalyst with embedded CoS (CoS@SNC). The synthesized flower-like CoS@SNC electrocatalyst derived from a novel MOF showed a uniform distribution of Co, S, N, and C at the molecular level in the MOF and it was rich in active sites, facilitating enhanced electrocatalytic performance. During the HER and OER in 0.1 M KOH solution, to reach a current density of 10 mA cm-2, lower overpotentials of -65 mV and 265 mV, respectively, were required and Tafel slopes of 47 mV dec-1 and 59.8 mV dec-1, respectively, were seen. In addition, due to a synergistic effect between CoS and the S,N-doped carbon matrix, long-term durability and stability were obtained. This facile synthetic strategy, which is also environmentally favorable, produces a promising bifunctional electrocatalyst.

5.
Anal Chim Acta ; 1118: 26-35, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32418601

ABSTRACT

We reported the synthesis of a copolymer- and metal-organic framework-based electrochemical sensor, UiO-66-NH2@P(ANI-co-ANA) using the polymerization method for the highly sensitive and selective detection of hydrogen peroxide (H2O2) and dopamine (DA). The as-synthesized material was characterized via Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The electrochemical characteristics of the proposed sensor were evaluated via impedance spectroscopy and cyclic voltammetry (CV). The electrochemical oxidation of DA and the reduction of H2O2 were determined via CV, square-wave voltammetry, and chronoamperometric techniques. The fabricated sensor exhibited a wide linear range of 25-500 µM, with a sensitivity of 1396.1 µAµM-1cm-2 and a limit of detection of 0.6 µM, for the electrochemical reduction of H2O2. Additionally, it exhibited a wide linear range of 10-110 µM, with a sensitivity of 1110.2 µAµM-1cm-2 and a limit of detection of 0.3 µM, for the electrochemical detection of DA. The practical utility of the fabricated sensor was evaluated via the detection of H2O2 in milk samples and DA in human urine samples.


Subject(s)
Dopamine/analysis , Electrochemical Techniques , Hydrogen Peroxide/analysis , Metal-Organic Frameworks/chemistry , Polymers/chemistry , Metal-Organic Frameworks/chemical synthesis , Molecular Structure , Polymers/chemical synthesis
6.
ACS Appl Mater Interfaces ; 9(42): 37166-37183, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28952309

ABSTRACT

A new titanium dioxide (TiO2)-based heterojunction nanohybrid (HJNH) composed of TiO2, graphene (G), poly[3-aminophenylboronic acid] (PAPBA), and gold nanoparticles (Au NPs) was synthesized and designated as TiO2(G) NW@PAPBA-Au HJNH. The TiO2(G) NW@PAPBA-Au HJNH possesses dual-mode signal photoelectrochemical (PEC) and electrochemical transduction capabilities to sense glucose and glycated hemoglobin (HbA1c) independently. The synthesis of the HJNH material involved two sequential stages: (i) simple electrospinning synthesis of G-embedded TiO2 nanowires [TiO2(G) NWs] and (ii) one-step synthesis of Au NP-dispersed PAPBA nanocomposite (NC) in the presence of TiO2(G) NWs. The as-synthesized TiO2(G) NW@PAPBA-Au HJNH was characterized by field emission scanning electron microscopy, field emission transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, thermogravimetric analysis, and UV-visible diffuse reflectance spectroscopy. A PEC platform was developed with TiO2(G) NW@PAPBA-Au HJNH for the selective detection of glucose without any enzyme auxiliary. The PEC glucose sensor presents an acceptable linear range (from 0.5 to 28 mM), good sensitivity (549.58 µA mM-1 cm-2), and low detection limit (0.11 mM), which are suited for diabetes glucose monitoring. Besides, the boronic acid groups in PAPBA were utilized as a host to capture HbA1c. We fabricated the electrochemical HbA1c sensor based on monitoring the electrocatalytic reduction current of hydrogen peroxide produced by HbA1c tethered to the sensor probe. The amperometric electrochemical sensor for HbA1c exhibited linear responses to HbA1c levels from 2.0 to 10% (with a detection limit of 0.17%). Notably, the performances of the fabricated glucose and HbA1c sensors are superior in the dual-signal transduction modes as compared to the literature, suggesting the significance of the newly designed bifunctional TiO2(G) NW@PAPBA-Au HJNH.

7.
Article in English | WPRIM (Western Pacific) | ID: wpr-225724

ABSTRACT

OBJECTIVE: Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. METHODS: AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. RESULTS: SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. CONCLUSIONS: Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial.


Subject(s)
Aggregatibacter actinomycetemcomitans , Biopolymers , Dental Implants , Diffusion , Methods , Microscopy, Electron, Scanning , Nanoparticles , Photoelectron Spectroscopy , Silver , Streptococcus , Streptococcus mutans , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...