Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 120(6): 1478-1491, 2023 06.
Article in English | MEDLINE | ID: mdl-36864663

ABSTRACT

The production of high-value biopharmaceuticals is dominated by mammalian production cells, particularly Chinese hamster ovary (CHO) cells, which have been widely used and preferred in manufacturing processes. The discovery of CRISPR-Cas9 significantly accelerated cell line engineering advances, allowing for production yield and quality improvements. Since then, several other CRISPR systems have become appealing genome editing tools, such as the Cas12a nucleases, which provide broad editing capabilities while utilizing short guide RNAs (gRNAs) that reduce the complexity of the editing systems. One of these is the Mad7 nuclease, which has been shown to efficiently convey targeted gene disruption and insertions in several different organisms. In this study, we demonstrate that Mad7 can generate indels for gene knockout of host cell proteins in CHO cells. We found that the efficiency of Mad7 depends on the addition of protein nuclear localization signals and the gRNAs employed for genome targeting. Moreover, we provide computational tools to design Mad7 gRNAs against any genome of choice and for automated indel detection analysis from next-generation sequencing data. In summary, this paper establishes the application of Mad7 in CHO cells, thereby improving the CRISPR toolbox versatility for research and cell line engineering.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Cricetinae , Animals , Cricetulus , CHO Cells , CRISPR-Cas Systems/genetics , Gene Knockout Techniques , Endonucleases/genetics
2.
Nature ; 609(7926): 341-347, 2022 09.
Article in English | MEDLINE | ID: mdl-36045295

ABSTRACT

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world's supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues.


Subject(s)
Antineoplastic Agents , Bioreactors , Biosynthetic Pathways , Metabolic Engineering , Saccharomyces cerevisiae , Vinblastine , Vinca Alkaloids , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/supply & distribution , Catharanthus/chemistry , Genes, Fungal , Genes, Plant , Metabolic Engineering/methods , Polyisoprenyl Phosphates , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tryptophan , Vinblastine/biosynthesis , Vinblastine/chemistry , Vinblastine/supply & distribution , Vinca Alkaloids/biosynthesis , Vinca Alkaloids/chemistry , Vinca Alkaloids/supply & distribution
3.
ACS Synth Biol ; 8(4): 758-774, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30807689

ABSTRACT

Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components. Here we show in a systematic manner how multiple components contribute to final net expression of recombinant genes in a characterized integration site. We develop a CRISPR/Cas9-based toolbox for construction of mammalian cell lines with targeted integration of a landing pad, containing a recombinant gene under defined 5' proximal regulatory elements. Generated site-specific recombinant cell lines can be used in a streamlined recombinase-mediated cassette exchange for fast screening of different expression cassettes. Using the developed toolbox, we show that different 5' proximal regulatory elements generate distinct and robust recombinant gene expression patterns in defined integration sites of CHO cells with a wide range of transcriptional outputs. This approach facilitates the generation of user-defined and product-specific gene expression patterns for programmable mammalian cell engineering.


Subject(s)
Gene Expression/genetics , Mammals/genetics , Recombinant Proteins/genetics , Animals , CHO Cells , CRISPR-Cas Systems/genetics , Cell Engineering/methods , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cricetulus , Recombinases/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics
4.
Metab Eng ; 52: 143-152, 2019 03.
Article in English | MEDLINE | ID: mdl-30513349

ABSTRACT

Recombinant Chinese hamster ovary (CHO) cells are able to provide biopharmaceuticals that are essentially free of human viruses and have N-glycosylation profiles similar, but not identical, to humans. Due to differences in N-glycan moieties, two members of the serpin superfamily, alpha-1-antitrypsin (A1AT) and plasma protease C1 inhibitor (C1INH), are currently derived from human plasma for treating A1AT and C1INH deficiency. Deriving therapeutic proteins from human plasma is generally a cost-intensive process and also harbors a risk of transmitting infectious particles. Recombinantly produced A1AT and C1INH (rhA1AT, rhC1INH) decorated with humanized N-glycans are therefore of clinical and commercial interest. Here, we present engineered CHO cell lines producing rhA1AT or rhC1INH with fully humanized N-glycosylation profiles. This was achieved by combining CRISPR/Cas9-mediated disruption of 10 gene targets with overexpression of human ST6GAL1. We were able to show that the N-linked glyco-structures of rhA1AT and rhC1INH are homogeneous and similar to the structures obtained from plasma-derived A1AT and C1INH, marketed as Prolastin®-C and Cinryze®, respectively. rhA1AT and rhC1INH produced in our glyco-engineered cell line showed no detectable differences to their plasma-purified counterparts on SDS-PAGE and had similar enzymatic in vitro activity. The work presented here shows the potential of expanding the glyco-engineering toolbox for CHO cells to produce a wider variety of glycoproteins with fully humanized N-glycan profiles. We envision replacing plasma-derived A1AT and C1INH with recombinant versions and thereby decreasing our dependence on human donor blood, a limited and possibly unsafe protein source for patients.


Subject(s)
CHO Cells/metabolism , Complement C1 Inhibitor Protein/biosynthesis , Metabolic Engineering/methods , alpha 1-Antitrypsin/biosynthesis , Animals , Antigens, CD/biosynthesis , Antigens, CD/genetics , CRISPR-Cas Systems , Cricetinae , Cricetulus , Glycosylation , Humans , Recombinant Proteins/biosynthesis , Sialyltransferases/biosynthesis , Sialyltransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...