Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Emerg Infect Dis ; 30(10): 2118-2127, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39320164

ABSTRACT

Chronic wasting disease (CWD) affects cervids in North America, Asia, and Scandinavia. CWD is unique in its efficient spread, partially because of contact with infectious prions shed in secreta. To assess temporal profiles of CWD prion shedding, we collected saliva, urine, and feces from white-tailed deer for 66 months after exposure to low oral doses of CWD-positive brain tissue or saliva. We analyzed prion seeding activity by using modified amyloid amplification assays incorporating iron oxide bead extraction, which improved CWD detection and reduced false positives. CWD prions were detected in feces, urine, and saliva as early as 6 months postinfection. More frequent and consistent shedding was observed in deer homozygous for glycine at prion protein gene codon 96 than in deer expressing alternate genotypes. Our findings demonstrate that improved amplification methods can be used to identify early antemortem CWD prion shedding, which might aid in disease surveillance of cervids.


Subject(s)
Deer , Prions , Wasting Disease, Chronic , Wasting Disease, Chronic/diagnosis , Wasting Disease, Chronic/epidemiology , Animals , Prions/metabolism , Prions/genetics , Longitudinal Studies , United States/epidemiology , Feces/chemistry , Saliva/chemistry
2.
J Biol Chem ; 300(9): 107617, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089583

ABSTRACT

While animal prion diseases are a threat to human health, their zoonotic potential is generally inefficient because of interspecies prion transmission barriers. New animal models are required to provide an understanding of these prion transmission barriers and to assess the zoonotic potential of animal prion diseases. To address this goal, we generated Drosophila transgenic for human or nonhuman primate prion protein (PrP) and determined their susceptibility to known pathogenic prion diseases, namely varient Creutzfeldt-Jakob disease (vCJD) and classical bovine spongiform encephalopathy (BSE), and that with unknown pathogenic potential, namely chronic wasting disease (CWD). Adult Drosophila transgenic for M129 or V129 human PrP or nonhuman primate PrP developed a neurotoxic phenotype and showed an accelerated loss of survival after exposure to vCJD, classical BSE, or CWD prions at the larval stage. vCJD prion strain identity was retained after passage in both M129 and V129 human PrP Drosophila. All of the primate PrP fly lines accumulated prion seeding activity and concomitantly developed a neurotoxic phenotype, generally including accelerated loss of survival, after exposure to CWD prions derived from different cervid species, including North American white-tailed deer and muntjac, and European reindeer and moose. These novel studies show that primate PrP transgenic Drosophila lack known prion transmission barriers since, in mammalian hosts, V129 human PrP is associated with severe resistance to classical BSE prions, while both human and cynomolgus macaque PrP are associated with resistance to CWD prions. Significantly, our data suggest that interspecies differences in the amino acid sequence of PrP may not be a principal determinant of the prion transmission barrier.

3.
Virus Res ; 338: 199246, 2023 12.
Article in English | MEDLINE | ID: mdl-37858729

ABSTRACT

Bluetongue virus (BTV) is an economically important pathogen of ruminant species with worldwide prevalence. While many BTV infections are asymptomatic, animals with symptomatic presentation deteriorate quickly with the sickest succumbing to disease within one week. Animals that survive the infection often require months to recover. The immune response to BTV infection is thought to play a central role in controlling the disease. Key to understanding BTV disease is profiling vertebrate host immunological cellular and cytokine responses. Studies to characterize immune responses in ruminants have been limited by a lack of species-specific reagents and assay technology. Here we assess the longitudinal immunological response to experimental BTV-17-California (CA) infection in sheep using the most up to date assays. We infected a cohort of sheep with BTV-17-CA and longitudinally monitored each animal for clinical disease, viremia and specific immunological parameters (B cells, T cells, monocytes) by RT-qPCR, traditional flow cytometry and/or fluorescent based antibody arrays. BTV-inoculated sheep exhibited clinical signs characteristic of bluetongue virus disease. Circulating virus was demonstrated after 8 days post inoculation (DPI) and remained detectable for the remainder of the time course (24 DPI). A distinct lymphopenia was observed between 7 and 14 DPI that rebounded to mock-inoculated control levels at 17 DPI. In addition, we observed increased expression of pro-inflammatory cytokines after 8 DPI. Taken together, we have established a model of BTV infection in sheep and have successfully monitored the longitudinal vertebrate host immunological response and viral infection progression using a combination of traditional methods and cutting-edge technology.


Subject(s)
Bluetongue virus , Bluetongue , Humans , Sheep , Animals , Bluetongue virus/genetics , Antibodies, Viral , Cytokines , T-Lymphocytes , Viremia/veterinary , Bluetongue/epidemiology
4.
Biochem J ; 480(19): 1485-1501, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37747806

ABSTRACT

Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.


Subject(s)
Prions , Wasting Disease, Chronic , Animals , Animals, Genetically Modified , Deer/genetics , Drosophila , Prions/genetics , Reindeer , Wasting Disease, Chronic/genetics
5.
Brain ; 145(9): 3236-3249, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35446941

ABSTRACT

The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt-Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt-Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.


Subject(s)
Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Prion Diseases , Prions , Animals , Drosophila/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Prion Proteins/metabolism , Prions/genetics , Protein Aggregates , Sheep
6.
Viruses ; 13(12)2021 12 03.
Article in English | MEDLINE | ID: mdl-34960698

ABSTRACT

The transmission of chronic wasting disease (CWD) has largely been attributed to contact with infectious prions shed in excretions (saliva, urine, feces, blood) by direct animal-to-animal exposure or indirect contact with the environment. Less-well studied has been the role that mother-to-offspring transmission may play in the facile transmission of CWD, and whether mother-to-offspring transmission before birth may contribute to the extensive spread of CWD. We thereby focused on a population of free-ranging white-tailed deer from West Virginia, USA, in which CWD has been detected. Fetal tissues, ranging from 113 to 158 days of gestation, were harvested from the uteri of CWD+ dams in the asymptomatic phase of infection. Using serial protein misfolding amplification (sPMCA), we detected evidence of prion seeds in 7 of 14 fetuses (50%) from 7 of 9 pregnancies (78%), with the earliest detection at 113 gestational days. This is the first report of CWD detection in free ranging white-tailed deer fetal tissues. Further investigation within cervid populations across North America will help define the role and impact of mother-to-offspring vertical transmission of CWD.


Subject(s)
Deer/embryology , Fetal Diseases/veterinary , Fetus/chemistry , Prions/isolation & purification , Wasting Disease, Chronic/transmission , Animals , Female , Fetal Diseases/diagnosis , Infectious Disease Transmission, Vertical , Male , Pregnancy , Pregnancy Complications, Infectious/veterinary , Wasting Disease, Chronic/diagnosis , Wasting Disease, Chronic/embryology , West Virginia
7.
J Gen Virol ; 102(8)2021 08.
Article in English | MEDLINE | ID: mdl-34410903

ABSTRACT

An infectious agent's pathogenic and transmission potential is heavily influenced by early events during the asymptomatic or subclinical phase of disease. During this phase, the presence of infectious agent may be relatively low. An important example of this is Zika virus (ZIKV), which can cross the placenta and infect the foetus, even in mothers with subclinical infections. These subclinical infections represent roughly 80 % of all human infections. Initial ZIKV pathogenesis studies were performed in type I interferon receptor (IFNAR) knockout mice. Blunting the interferon response resulted in robust infectivity, and increased the utility of mice to model ZIKV infections. However, due to the removal of the interferon response, the use of these models impedes full characterization of immune responses to ZIKV-related pathologies. Moreover, IFNAR-deficient models represent severe disease whereas less is known regarding subclinical infections. Investigation of the anti-viral immune response elicited at the maternal-foetal interface is critical to fully understand mechanisms involved in foetal infection, foetal development, and disease processes recognized to occur during subclinical maternal infections. Thus, immunocompetent experimental models that recapitulate natural infections are needed. We have established subclinical intravaginal ZIKV infections in mice and guinea pigs. We found that these infections resulted in: the presence of both ZIKV RNA transcripts and infectious virus in maternal and placental tissues, establishment of foetal infections and ZIKV-mediated CXCL10 expression. These models will aid in discerning the mechanisms of subclinical ZIKV mother-to-offspring transmission, and by extension can be used to investigate other maternal infections that impact foetal development.


Subject(s)
Fetus , Placenta , Pregnancy Complications, Infectious , Zika Virus Infection/virology , Zika Virus , Animals , Chlorocebus aethiops , Female , Fetus/immunology , Fetus/virology , Guinea Pigs , Humans , Infectious Disease Transmission, Vertical , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Placenta/immunology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , Vero Cells , Zika Virus/immunology , Zika Virus/pathogenicity
8.
PLoS One ; 15(8): e0237410, 2020.
Article in English | MEDLINE | ID: mdl-32817706

ABSTRACT

The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogenesis. We orally inoculated white-tailed deer with either single or multiple divided doses of prions of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.


Subject(s)
Brain/metabolism , Environmental Exposure/adverse effects , Prions/metabolism , Saliva/metabolism , Wasting Disease, Chronic/transmission , Animals , Deer
9.
J Gen Virol ; 101(3): 347-361, 2020 03.
Article in English | MEDLINE | ID: mdl-31846418

ABSTRACT

Infectivity associated with prion disease has been demonstrated in blood throughout the course of disease, yet the ability to detect blood-borne prions by in vitro methods remains challenging. We capitalized on longitudinal pathogenesis studies of chronic wasting disease (CWD) conducted in the native host to examine haematogenous prion load by real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification. Our study demonstrated in vitro detection of amyloid seeding activity (prions) in buffy-coat cells harvested from deer orally dosed with low concentrations of CWD positive (+) brain (1 gr and 300 ng) or saliva (300 ng RT-QuIC equivalent). These findings make possible the longitudinal assessment of prion disease and deeper investigation of the role haematogenous prions play in prion pathogenesis.


Subject(s)
Deer/blood , PrPC Proteins/genetics , PrPC Proteins/metabolism , Wasting Disease, Chronic/pathology , Amyloid/metabolism , Animals , Brain/metabolism , Brain/pathology , Cohort Studies , Longitudinal Studies , Mesocricetus , Mice , Mice, Transgenic , Real-Time Polymerase Chain Reaction/methods , Saliva/metabolism
10.
PLoS One ; 14(5): e0216621, 2019.
Article in English | MEDLINE | ID: mdl-31071138

ABSTRACT

Longitudinal studies of chronic wasting disease (CWD) in the native host have provided considerable understanding of how this prion disease continues to efficiently spread among cervid species. These studies entail great cost in animal, time and financial support. A variety of methods have emerged including transgenic mouse bioassay, western blot, enzyme-linked immunoassay (ELISA), immunohistochemistry (IHC), serial protein misfolding cyclic amplification (sPMCA) and real time quaking-induced conversion (RT-QuIC), that deepen our understanding of this and other protein misfolding disorders. To further characterize an inoculum source used for ongoing CWD studies and to determine how the readouts from each of these assays compare, we assayed a CWD-positive brain pool homogenate (CBP6) and a mouse dilutional bioassay of this homogenate using the above detection methods. We demonstrate that: (i) amplification assays enhanced detection of amyloid seeding activity in the CWD+ cervid brain pool to levels beyond mouse LD50, (ii) conventional detection methods (IHC and western blot) performed well in identifying the presence of PrPSc in terminal brain tissue yet lack sufficient detection sensitivity to identify all CWD-infected mice, and (iii) the incorporation of amplification assays enhanced detection of CWD-infected mice near the LD50. This cross-platform analysis provides a basis to calibrate the relative sensitivities of CWD detection assays.


Subject(s)
Amyloid/analysis , Biological Assay/methods , Brain/metabolism , Deer/metabolism , Nucleic Acid Amplification Techniques/methods , Prions/analysis , Wasting Disease, Chronic/diagnosis , Animals , Brain/pathology , Mice , Mice, Transgenic , Prion Proteins/genetics , Prions/genetics , Wasting Disease, Chronic/transmission
11.
J Clin Microbiol ; 56(1)2018 01.
Article in English | MEDLINE | ID: mdl-29118163

ABSTRACT

The detection of prions is difficult due to the peculiarity of the pathogen, which is a misfolded form of a normal protein. The specificity and sensitivity of detection methods are imperfect in complex samples, including in excreta. Here, we combined optimized prion amplification procedures with a statistical method that accounts for false-positive and false-negative errors to test deer saliva for chronic wasting disease (CWD) prions. This approach enabled us to discriminate the shedding of prions in saliva and the detection of prions in saliva-a distinction crucial to understanding the role of prion shedding in disease transmission and for diagnosis. We found that assay sensitivity and specificity were indeed imperfect, and we were able to draw several conclusions pertinent to CWD biology from our analyses: (i) the shedding of prions in saliva increases with time postinoculation, but is common throughout the preclinical phase of disease; (ii) the shedding propensity is influenced neither by sex nor by prion protein genotype at codon 96; and (iii) the source of prion-containing inoculum used to infect deer affects the likelihood of prion shedding in saliva; oral inoculation of deer with CWD-positive saliva resulted in 2.77 times the likelihood of prion shedding in saliva compared to that from inoculation with CWD-positive brain. These results are pertinent to horizontal CWD transmission in wild cervids. Moreover, the approach described is applicable to other diagnostic assays with imperfect detection.


Subject(s)
Deer/metabolism , Diagnostic Techniques and Procedures/veterinary , Models, Statistical , Prions/metabolism , Saliva/metabolism , Wasting Disease, Chronic/diagnosis , Animals , Diagnostic Errors , Female , Male , Prions/genetics , Sensitivity and Specificity , Wasting Disease, Chronic/metabolism , Wasting Disease, Chronic/transmission
12.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28539446

ABSTRACT

Ample evidence exists for the presence of infectious agents at the maternal-fetal interface, often with grave outcomes to the developing fetus (i.e., Zika virus, brucella, cytomegalovirus, and toxoplasma). While less studied, pregnancy-related transmissible spongiform encephalopathies (TSEs) have been implicated in several species, including humans. Our previous work has shown that prions can be transferred from mother to offspring, resulting in the development of clinical TSE disease in offspring born to muntjac dams infected with chronic wasting disease (CWD) (1). We further demonstrated protein misfolding cyclic amplification (PMCA)-competent prions within the female reproductive tract and in fetal tissues harvested from CWD experimentally and naturally exposed cervids (1, 2). To assess whether the PMCA-competent prions residing at the maternal-fetal interface were infectious and to determine if the real-time quaking-induced conversion (RT-QuIC) methodology may enhance our ability to detect amyloid fibrils within the pregnancy microenvironment, we employed a mouse bioassay and RT-QuIC. In this study, we have demonstrated RT-QuIC seeding activity in uterus, placentome, ovary, and amniotic fluid but not in allantoic fluids harvested from CWD-infected Reeves' muntjac dams showing clinical signs of infection (clinically CWD-infected) and in some placentomes from pre-clinically CWD-infected dams. Prion infectivity was confirmed within the uterus, amniotic fluid, and the placentome, the semipermeable interface that sustains the developing fetus, of CWD-infected dams. This is the first report of prion infectivity within the cervid pregnancy microenvironment, revealing a source of fetal CWD exposure prior to the birthing process, maternal grooming, or encounters with contaminated environments.IMPORTANCE The facile dissemination of chronic wasting disease within captive and free-range cervid populations has led to questions regarding the transmission dynamics of this disease. Direct contact with infected animals and indirect contact with infectious prions in bodily fluids and contaminated environments are suspected to explain the majority of this transmission. A third mode of transmission, from mother to offspring, may be underappreciated. The presence of pregnancy-related prion infectivity within the uterus, amniotic fluid, and the placental structure reveals that the developing fetus is exposed to a source of prions long before exposure to the infectious agent during and after the birthing process or via contact with contaminated environments. These findings have impact on our current concept of CWD disease transmission.


Subject(s)
Animal Structures/chemistry , Muntjacs , Pregnancy Complications, Infectious/veterinary , Prions/analysis , Wasting Disease, Chronic/pathology , Animals , Biological Assay , Chemistry Techniques, Analytical , Female , Mice , Pregnancy , Pregnancy Complications, Infectious/pathology
13.
Lab Anim (NY) ; 45(4): 140-2, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27003353

ABSTRACT

In a continuing effort to better understand the transmission and persistence of chronic wasting disease in wild populations of cervids, Colorado State University, Fort Collins houses two species of deer indoors to study the pathogenesis of chronic wasting disease. Here we report key aspects regarding the husbandry and medication of Reeves' muntjac and white-tailed deer in captivity for research purposes.


Subject(s)
Animal Experimentation , Animal Husbandry/methods , Deer , Wasting Disease, Chronic , Animals , Disease Models, Animal , Female , Housing, Animal , Male
14.
J Gen Virol ; 96(11): 3444-3455, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26358706

ABSTRACT

The presence of disease-associated prions in tissues and bodily fluids of chronic wasting disease (CWD)-infected cervids has received much investigation, yet little is known about mother-to-offspring transmission of CWD. Our previous work demonstrated that mother-to-offspring transmission is efficient in an experimental setting. To address the question of relevance in a naturally exposed free-ranging population, we assessed maternal and fetal tissues derived from 19 elk dam-calf pairs collected from free-ranging Rocky Mountain elk from north-central Colorado, a known CWD endemic region. Conventional immunohistochemistry identified three of 19 CWD-positive dams, whereas a more sensitive assay [serial protein misfolding cyclic amplification (sPMCA)] detected CWD prion seeding activity (PrPCWD) in 15 of 19 dams. PrPCWD distribution in tissues was widespread, and included the central nervous system (CNS), lymphoreticular system, and reproductive, secretory, excretory and adipose tissues. Interestingly, five of 15 sPMCA-positive dams showed no evidence of PrPCWD in either CNS or lymphoreticular system, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the 15 sPMCA-positive dams revealed PrPCWD in 80 % of fetuses (12 of 15), regardless of gestational stage. These findings demonstrated that PrPCWD is more abundant in peripheral tissues of CWD-exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of CWD in naturally exposed cervid populations.


Subject(s)
Animals, Wild/metabolism , Deer/metabolism , Infectious Disease Transmission, Vertical , Prion Diseases/transmission , Prions/metabolism , Wasting Disease, Chronic/transmission , Animals , Central Nervous System/metabolism , Colorado , Deer/embryology , Female , Male , Prion Diseases/embryology , Prion Diseases/metabolism , Prions/genetics , Tissue Distribution , Wasting Disease, Chronic/embryology , Wasting Disease, Chronic/metabolism
15.
J Virol ; 89(14): 7421-4, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25926635

ABSTRACT

Infectious prions traverse epithelial barriers to gain access to the circulatory system, yet the temporal parameters of transepithelial transport and persistence in the blood over time remain unknown. We used whole-blood real-time quaking-induced conversion (wbRT-QuIC) to analyze whole blood collected from transmissible spongiform encephalopathy (TSE)-inoculated deer and hamsters throughout the incubation period for the presence of common prion protein-conversion competent amyloid (PrPCCCA). We observed PrPC-CCA in the blood of TSE-inoculated hosts throughout the disease course from minutes postexposure to terminal disease.


Subject(s)
Prions/administration & dosage , Prions/blood , Administration, Intranasal , Administration, Oral , Animals , Blood Chemical Analysis , Deer , Injections, Intravenous , Male , Mesocricetus , Time Factors
16.
Vaccine ; 33(5): 726-33, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25539804

ABSTRACT

Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.


Subject(s)
Deer , Prions/administration & dosage , Prions/immunology , Salmonella Vaccines/administration & dosage , Wasting Disease, Chronic/prevention & control , Administration, Mucosal , Animals , Blood/immunology , Immunoglobulin A/analysis , Immunoglobulin G/blood , Prions/genetics , Saliva/immunology , Salmonella Vaccines/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Wasting Disease, Chronic/immunology
17.
J Vis Exp ; (89)2014 Jul 19.
Article in English | MEDLINE | ID: mdl-25079295

ABSTRACT

Animal models are commonly used throughout research laboratories to accomplish what would normally be considered impractical in a pathogen's native host. Milk collection from animals allows scientists the opportunity to study many aspects of reproduction including vertical transmission, passive immunity, mammary gland biology, and lactation. Obtaining adequate volumes of milk for these studies is a challenging task, especially from small animal models. Here we illustrate an inexpensive and facile method for milk collection in mice and Reeves' muntjac deer that does not require specialized equipment or extensive training. This particular method requires two researchers: one to express the milk and to stabilize the animal, and one to collect the milk in an appropriate container from either a Muntjac or mouse model. The mouse model also requires the use of a P-200 pipetman and corresponding pipette tips. While this method is low cost and relatively easy to perform, researchers should be advised that anesthetizing the animal is required for optimal milk collection.


Subject(s)
Mice , Milk , Muntjacs , Specimen Handling/methods , Animals , Mice, Transgenic , Models, Animal
18.
Proc Natl Acad Sci U S A ; 111(30): 11169-74, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25034251

ABSTRACT

Understanding the molecular parameters governing prion propagation is crucial for controlling these lethal, proteinaceous, and infectious neurodegenerative diseases. To explore the effects of prion protein (PrP) sequence and structural variations on intra- and interspecies transmission, we integrated studies in deer, a species naturally susceptible to chronic wasting disease (CWD), a burgeoning, contagious epidemic of uncertain origin and zoonotic potential, with structural and transgenic (Tg) mouse modeling and cell-free prion amplification. CWD properties were faithfully maintained in deer following passage through Tg mice expressing cognate PrP, and the influences of naturally occurring PrP polymorphisms on CWD susceptibility were accurately reproduced in Tg mice or cell-free systems. Although Tg mice also recapitulated susceptibility of deer to sheep prions, polymorphisms that provided protection against CWD had distinct and varied influences. Whereas substitutions at residues 95 and 96 in the unstructured region affected CWD propagation, their protective effects were overridden during replication of sheep prions in Tg mice and, in the case of residue 96, deer. The inhibitory effects on sheep prions of glutamate at residue 226 in elk PrP, compared with glutamine in deer PrP, and the protective effects of the phenylalanine for serine substitution at the adjacent residue 225, coincided with structural rearrangements in the globular domain affecting interaction between α-helix 3 and the loop between ß2 and α-helix 2. These structure-function analyses are consistent with previous structural investigations and confirm a role for plasticity of this tertiary structural epitope in the control of PrP conversion and strain propagation.


Subject(s)
Polymorphism, Genetic , PrPSc Proteins/genetics , Amino Acid Substitution , Animals , Deer , Mice , Mice, Transgenic , Mutation, Missense , PrPSc Proteins/metabolism , Protein Structure, Secondary , Sheep , Sheep Diseases/genetics , Sheep Diseases/metabolism , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/metabolism
19.
J Vis Exp ; (83): e50855, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24430673

ABSTRACT

Reeves' muntjac deer (Muntiacus reevesi) are a small cervid species native to southeast Asia, and are currently being investigated as a potential model of prion disease transmission and pathogenesis. Vertical transmission is an area of interest among researchers studying infectious diseases, including prion disease, and these investigations require efficient methods for evaluating the effects of maternal infection on reproductive performance. Ultrasonographic examination is a well-established tool for diagnosing pregnancy and assessing fetal health in many animal species(1-7), including several species of farmed cervids(8-19), however this technique has not been described in Reeves' muntjac deer. Here we describe the application of transabdominal ultrasound to detect pregnancy in muntjac does and to evaluate fetal growth and development throughout the gestational period. Using this procedure, pregnant animals were identified as early as 35 days following doe-buck pairing and this was an effective means to safely monitor the pregnancy at regular intervals. Future goals of this work will include establishing normal fetal measurement references for estimation of gestational age, determining sensitivity and specificity of the technique for diagnosing pregnancy at various stages of gestation, and identifying variations in fetal growth and development under different experimental conditions.


Subject(s)
Muntjacs/physiology , Pregnancy, Animal/physiology , Ultrasonography, Prenatal/veterinary , Abdomen/diagnostic imaging , Animals , Female , Pregnancy , Ultrasonography, Prenatal/methods
20.
PLoS One ; 8(11): e80203, 2013.
Article in English | MEDLINE | ID: mdl-24224043

ABSTRACT

Blood-borne transmission of infectious prions during the symptomatic and asymptomatic stages of disease occurs for both human and animal transmissible spongiform encephalopathies (TSEs). The geographical distribution of the cervid TSE, chronic wasting disease (CWD), continues to spread across North America and the prospective number of individuals harboring an asymptomatic infection of human variant Creutzfeldt-Jakob Disease (vCJD) in the United Kingdom has been projected to be ~1 in 3000 residents. Thus, it is important to monitor cervid and human blood products to ensure herd health and human safety. Current methods for detecting blood-associated prions rely primarily upon bioassay in laboratory animals. While bioassay provides high sensitivity and specificity, it requires many months, animals, and it is costly. Here we report modification of the real time quaking-induced conversion (RT-QuIC) assay to detect blood-borne prions in whole blood from prion-infected preclinical white-tailed deer, muntjac deer, and Syrian hamsters, attaining sensitivity of >90% while maintaining 100% specificity. Our results indicate that RT-QuIC methodology as modified can provide consistent and reliable detection of blood-borne prions in preclinical and symptomatic stages of two animal TSEs, offering promise for prionemia detection in other species, including humans.


Subject(s)
Prion Diseases/blood , Prions/blood , Animals , Cricetinae , Humans , Immunohistochemistry , Mesocricetus , Phosphotungstic Acid
SELECTION OF CITATIONS
SEARCH DETAIL