Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
iScience ; 26(5): 106669, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37182109

ABSTRACT

The ubiquitous volume-regulated anion channels (VRACs) facilitate cell volume control and contribute to many other physiological processes. Treatment with non-specific VRAC blockers or brain-specific deletion of the essential VRAC subunit LRRC8A is highly protective in rodent models of stroke. Here, we tested the widely accepted idea that the harmful effects of VRACs are mediated by release of the excitatory neurotransmitter glutamate. We produced conditional LRRC8A knockout either exclusively in astrocytes or in the majority of brain cells. Genetically modified mice were subjected to an experimental stroke (middle cerebral artery occlusion). The astrocytic LRRC8A knockout yielded no protection. Conversely, the brain-wide LRRC8A deletion strongly reduced cerebral infarction in both heterozygous (Het) and full KO mice. Yet, despite identical protection, Het mice had full swelling-activated glutamate release, whereas KO animals showed its virtual absence. These findings suggest that LRRC8A contributes to ischemic brain injury via a mechanism other than VRAC-mediated glutamate release.

2.
Int J Hyperthermia ; 39(1): 1283-1293, 2022.
Article in English | MEDLINE | ID: mdl-36162814

ABSTRACT

BACKGROUND: In stereotactic radiosurgery, isodose lines must be considered to determine how surrounding tissue is affected. In thermal ablative therapy, such as laser interstitial thermal therapy (LITT), transcranial MR-guided focused ultrasound (tcMRgFUS), and needle-based therapeutic ultrasound (NBTU), how the surrounding area is affected has not been well studied. OBJECTIVE: We aimed to quantify the transition zone surrounding the ablation core created by magnetic resonance-guided robotically-assisted (MRgRA) delivery of NBTU using multi-slice volumetric 2-D magnetic resonance thermal imaging (MRTI) and subsequent characterization of the resultant tissue damage using histopathologic analysis. METHODS: Four swine underwent MRgRA NBTU using varying duration and wattage for treatment delivery. Serial MRI images were obtained, and the most representative were overlaid with isodose lines and compared to brain tissue acquired postmortem which underwent histopathologic analysis. These results were also compared to predicted volumes using a finite element analysis model. Contralateral brain tissue was used for control data. RESULTS: Intraoperative MRTI thermal isodose contours were characterized and comprehensively mapped to post-operative MRI images and qualitatively compared with histological tissue sections postmortem. NBTU 360° ablations induced smaller lesion volumes (33.19 mm3; 120 s, 3 W; 30.05 mm3, 180 s, 4 W) versus 180° ablations (77.20 mm3, 120 s, 3 W; 109.29 mm3; 180 s; 4 W). MRTI/MRI overlay demonstrated the lesion within the proximal isodose lines. The ablation-zone was characterized by dense macrophage infiltration and glial/neuronal loss as demonstrated by glial fibrillary acidic protein (GFAP) and neurofilament (NF) absence and avid CD163 staining. The transition-zone between lesion and normal brain demonstrated decreased macrophage infiltration and measured ∼345 microns (n - 3). We did not detect overt hemorrhages or signs of edema in the adjacent spared tissue. CONCLUSION: We successfully performed MRgRA NBTU ablation in swine and demonstrated minimal histologic changes extended past the ablation-zone. The lesion was characterized by macrophage infiltration and glial/neuronal loss which decreased through the transition-zone.


Subject(s)
Brain , Ultrasonic Therapy , Animals , Brain/diagnostic imaging , Brain/surgery , Glial Fibrillary Acidic Protein , Liver , Magnetic Resonance Imaging/methods , Swine
3.
FASEB J ; 35(10): e21869, 2021 10.
Article in English | MEDLINE | ID: mdl-34469026

ABSTRACT

The leucine-rich repeat-containing family 8 member A (LRRC8A) is an essential subunit of the volume-regulated anion channel (VRAC). VRAC is critical for cell volume control, but its broader physiological functions remain under investigation. Recent studies in the field indicate that Lrrc8a disruption in the brain astrocytes reduces neuronal excitability, impairs synaptic plasticity and memory, and protects against cerebral ischemia. In the present work, we generated brain-wide conditional LRRC8A knockout mice (LRRC8A bKO) using NestinCre -driven Lrrc8aflox/flox excision in neurons, astrocytes, and oligodendroglia. LRRC8A bKO animals were born close to the expected Mendelian ratio and developed without overt histological abnormalities, but, surprisingly, all died between 5 and 9 weeks of age with a seizure phenotype, which was confirmed by video and EEG recordings. Brain slice electrophysiology detected changes in the excitability of pyramidal cells and modified GABAergic inputs in the hippocampal CA1 region of LRRC8A bKO. LRRC8A-null hippocampi showed increased immunoreactivity of the astrocytic marker GFAP, indicating reactive astrogliosis. We also found decreased whole-brain protein levels of the GABA transporter GAT-1, the glutamate transporter GLT-1, and the astrocytic enzyme glutamine synthetase. Complementary HPLC assays identified reduction in the tissue levels of the glutamate and GABA precursor glutamine. Together, these findings suggest that VRAC provides vital control of brain excitability in mouse adolescence. VRAC deletion leads to a lethal phenotype involving progressive astrogliosis and dysregulation of astrocytic uptake and supply of amino acid neurotransmitters and their precursors.


Subject(s)
Astrocytes/pathology , Gliosis/mortality , Glutamic Acid/metabolism , Membrane Proteins/physiology , Seizures/mortality , Animals , Astrocytes/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Female , Gliosis/etiology , Gliosis/pathology , Ion Transport , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Seizures/etiology , Seizures/pathology
4.
Int J Hyperthermia ; 38(1): 907-915, 2021.
Article in English | MEDLINE | ID: mdl-34148489

ABSTRACT

BACKGROUND: High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic resonance-guided robotically-assisted (MRgRA) needle-based therapeutic ultrasound (NBTU) using multislice volumetric 2-D magnetic resonance thermal imaging (MRTI) overcomes these limitations and has potential to produce less collateral tissue damage than current methods. OBJECTIVE: To correlate multislice volumetric 2-D MRTI volumes with histologically confirmed regions of tissue damage in MRgRA NBTU. METHODS: Seven swine underwent a total of 8 frontal MRgRA NBTU lesions. MRTI ablation volumes were compared to histologic tissue damage on brain sections stained with 2,3,5-triphenyltetrazolium chloride (TTC). Bland-Altman analyses and correlation trends were used to compare MRTI and TTC ablation volumes. RESULTS: Data from the initial and third swine's ablations were excluded due to sub-optimal tissue staining. For the remaining ablations (n = 6), the limits of agreement between the MRTI and histologic volumes ranged from -0.149 cm3 to 0.252 cm3 with a mean difference of 0.052 ± 0.042 cm3 (11.1%). There was a high correlation between the MRTI and histology volumes (r2 = 0.831) with a strong linear relationship (r = 0.868). CONCLUSION: We used a volumetric MRTI technique to accurately track thermal changes during MRgRA NBTU in preparation for human trials. Improved volumetric coverage with MRTI enhanced our delivery of therapy and has far-reaching implications for focused ultrasound in the broader clinical setting.


Subject(s)
Brain Neoplasms , High-Intensity Focused Ultrasound Ablation , Ultrasonic Therapy , Animals , Brain/diagnostic imaging , Brain/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Swine
5.
Neurosci Lett ; 757: 135977, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34023413

ABSTRACT

BACKGROUND: Changes in inflammatory cytokine levels contribute to the induction and maintenance of neuropathic pain. We have shown that external low intensity focused ultrasound (liFUS) reduces allodynia in a common peroneal nerve injury (CPNI). Here, we investigate an underlying mechanism of action for this treatment and measure the effect of liFUS on inflammatory markers. METHODS: Male rats were divided into four groups: CPNI/liFUS, CPNI/shamliFUS, shamCPNI/liFUS, and shamCPNI/shamliFUS. Mechanical nociceptive thresholds were measured using Von Frey filaments (VFF) to confirm the absence/presence of allodynia at baseline, after CPNI, and after liFUS. Commercial microarray and ELISA assays were used to assess cytokine expression in the treated L5 dorsal root ganglion (DRG) and dorsal horn (DH) tissue 24 and 72 h after liFUS. RESULTS: VFF thresholds were significantly reduced following CPNI in both groups that received the injury (p < 0.001). After liFUS, only the CPNI/liFUS cohort showed a significant increase in mechanical thresholds (p < 0.001). CPNI significantly increased TNFa, IL6, CNTF, IL1b (p < 0.05 for all) levels in the DRG and DH, compared to baseline, consistent with previous work in sciatic nerve injury. LiFUS in CPNI rats resulted in a decrease in these cytokines in DRG 72 h post-therapy (TNFa, IL6, CNTF and IL1b, p < 0.001). In the DH, IL1b, CNTF, and TNFa (p < 0.05 for all) decreased 72 h after liFUS. CONCLUSION: We have demonstrated that liFUS modifies inflammatory cytokines in both DRG and DH in CPNI rats. These data provide evidence that liFUS, reverses the allodynic phenotype, in part, by altering inflammatory cytokine pathways.


Subject(s)
Hyperalgesia/therapy , Neuralgia/therapy , Peripheral Nerve Injuries/complications , Ultrasonic Therapy/methods , Animals , Cytokines/metabolism , Disease Models, Animal , Ganglia, Spinal/immunology , Ganglia, Spinal/metabolism , Humans , Hyperalgesia/diagnosis , Hyperalgesia/immunology , Male , Neuralgia/diagnosis , Neuralgia/immunology , Peripheral Nerve Injuries/immunology , Peripheral Nerve Injuries/therapy , Peroneal Nerve/injuries , Rats , Rats, Sprague-Dawley , Signal Transduction/immunology , Signal Transduction/radiation effects , Spinal Cord Dorsal Horn/immunology , Spinal Cord Dorsal Horn/metabolism , Ultrasonic Waves
6.
J Neurosurg ; : 1-8, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33862597

ABSTRACT

OBJECTIVE: The authors' laboratory has previously demonstrated beneficial effects of noninvasive low intensity focused ultrasound (liFUS), targeted at the dorsal root ganglion (DRG), for reducing allodynia in rodent neuropathic pain models. However, in rats the DRG is 5 mm below the skin when approached laterally, while in humans the DRG is typically 5-8 cm deep. Here, using a modified liFUS probe, the authors demonstrated the feasibility of using external liFUS for modulation of antinociceptive responses in neuropathic swine. METHODS: Two cohorts of swine underwent a common peroneal nerve injury (CPNI) to induce neuropathic pain. In the first cohort, pigs (14 kg) were iteratively tested to determine treatment parameters. liFUS penetration to the L5 DRG was verified by using a thermocouple to monitor tissue temperature changes and by measuring nerve conduction velocity (NCV) at the corresponding common peroneal nerve (CPN). Pain behaviors were monitored before and after treatment. DRG was evaluated for tissue damage postmortem. Based on data from the first cohort, a treatment algorithm was developed, parameter predictions were verified, and neuropathic pain was significantly modified in a second cohort of larger swine (20 kg). RESULTS: The authors performed a dose-response curve analysis in 14-kg CPNI swine. Specifically, after confirming that the liFUS probe could reach 5 cm in ex vivo tissue experiments, the authors tested liFUS in 14-kg CPNI swine. The mean ± SEM DRG depth was 3.79 ± 0.09 cm in this initial cohort. The parameters were determined and then extrapolated to larger animals (20 kg), and predictions were verified. Tissue temperature elevations at the treatment site did not exceed 2°C, and the expected increases in the CPN NCV were observed. liFUS treatment eliminated pain guarding in all animals for the duration of follow-up (up to 1 month) and improved allodynia for 5 days postprocedure. No evidence of histological damage was seen using Fluoro-Jade and H&E staining. CONCLUSIONS: The results demonstrate that a 5-cm depth can be reached with external liFUS and alters pain behavior and allodynia in a large-animal model of neuropathic pain.

7.
J Neurosurg ; : 1-8, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33862596

ABSTRACT

OBJECTIVE: To date, muscular and bone pain have been studied in domestic swine models, but the only neuropathic pain model described in swine is a mixed neuritis model. Common peroneal nerve injury (CPNI) neuropathic pain models have been utilized in both mice and rats. METHODS: The authors developed a swine surgical CPNI model of neuropathic pain. Behavioral outcomes were validated with von Frey filament testing, thermal sensitivity assessments, and social and motor scoring. Demyelination of the nerve was confirmed through standard histological assessment. The contralateral nerve served as the control. RESULTS: CPNI induced mechanical and thermal allodynia (p < 0.001 [n = 10] and p < 0.05 [n = 4], respectively) and increased pain behavior, i.e., guarding of the painful leg (n = 12). Myelin protein zero (P0) staining revealed demyelination of the ligated nerve upstream of the ligation site. CONCLUSIONS: In a neuropathic pain model in domestic swine, the authors demonstrated that CPNI induces demyelination of the common peroneal nerve, which the authors hypothesize is responsible for the resulting allodynic pain behavior. As the anatomical features of domestic swine resemble those of humans more closely than previously used rat and mouse models, utilizing this swine model, which is to the authors' knowledge the first of its kind, will aid in the translation of experimental treatments to clinical trials.

8.
Neuroscience ; 429: 264-272, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32001366

ABSTRACT

Non-invasive treatment methods for neuropathic pain are lacking. We assess how modulatory low intensity focused ultrasound (liFUS) at the L5 dorsal root ganglion (DRG) affects behavioral responses and sensory nerve action potentials (SNAPs) in a common peroneal nerve injury (CPNI) model. Rats were assessed for mechanical and thermal responses using Von Frey filaments (VFF) and the hot plate test (HPT) following CPNI surgery. Testing was repeated 24 h after liFUS treatment. Significant increases in mechanical and thermal sensory thresholds were seen post-liFUS treatment, indicating a reduction in sensitivity to pain (p < 0.0001, p = 0.02, respectively). Animals who received CPNI surgery had significant increases in SNAP latencies compared to sham CPNI surgery animals (p = 0.0003) before liFUS treatment. LiFUS induced significant reductions in SNAP latency in both CPNI liFUS and sham CPNI liFUS cohorts, for up to 35 min post treatment. No changes were seen in SNAP amplitude and there was no evidence of neuronal degeneration 24 h after liFUS treatment, showing that liFUS did not damage the tissue being modulated. This is the first in vivo study of the impact of liFUS on peripheral nerve electrophysiology in a model of chronic pain. This study demonstrates the effects of liFUS on peripheral nerve electrophysiology in vivo. We found that external liFUS treatment results in transient decreased latency in common peroneal nerve (CPN) sensory nerve action potentials (SNAPs) with no change in signal amplitude.


Subject(s)
Peripheral Nerve Injuries , Peroneal Nerve , Animals , Ganglia, Spinal , Hyperalgesia , Rats , Rats, Sprague-Dawley , Rodentia
9.
Neuroscience ; 430: 82-93, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32032575

ABSTRACT

Previously, we showed internal low intensity focused ultrasound (liFUS) improves nociceptive thresholds in rats with vincristine-induced neuropathy (VIN) for 48-h post-treatment. Here, we perform more rigorous behavioral testing with the internal device and introduce external liFUS treatment. Behavioral testing confirmed VIN (Von Frey fibers, VFF; hot plate, HPT; locomotion, OFT). This was followed by internal or external liFUS treatment (2.5 W or 8 W, for 3 min, respectively) to the left L5 dorsal root ganglia (DRG). A thermocouple placed at the DRG documented temperature changes during treatment, to confirm the modulatory nature of our treatment. Behavioral testing was performed pre-liFUS, and for five consecutive days post-liFUS. Groups included: (1) VIN/liFUS, (2) saline/liFUS, (3) VIN/sham liFUS, and (4) saline/sham liFUS. Significant improvements in mechanical (VFF) and thermal (HPT) nociceptive thresholds were seen in the VIN/liFUS group following both internal and external treatment. Hematoxylin and Eosin, and Fluorojade staining showed no histological damage to the DRG. Internal liFUS treatment produced a mean temperature rise of 3.21 ±â€¯0.30 °C, whereas external liFUS resulted in a mean temperature rise of 1.78 °C ±â€¯0.21 °C. We demonstrate that, in a VIN rat model, external liFUS treatment of the L5 DRG significantly reduces nociceptive sensitivity thresholds without causing tissue damage.


Subject(s)
Hyperalgesia , Neuralgia , Animals , Ganglia, Spinal , Hyperalgesia/chemically induced , Neuralgia/chemically induced , Neuralgia/drug therapy , Rats , Rats, Sprague-Dawley , Vincristine
10.
J Neurosci Methods ; 294: 1-6, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29061345

ABSTRACT

BACKGROUND: Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. NEW METHOD: To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. RESULTS: Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. COMPARISON WITH EXISTING METHODS: We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. CONCLUSIONS: BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses.


Subject(s)
Brain/cytology , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Neurons/cytology , Software , Algorithms , Animals , Mice , Observer Variation , Reproducibility of Results , Retina/anatomy & histology
11.
J Neurosci ; 36(28): 7485-96, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27413158

ABSTRACT

UNLABELLED: The occurrence of recurrent, unprovoked seizures is the hallmark of human epilepsy. Currently, only two-thirds of this patient population has adequate seizure control. New epilepsy models provide the potential for not only understanding the development of spontaneous seizures, but also for testing new strategies to treat this disorder. Here, we characterize a primary generalized seizure model of epilepsy following repeated exposure to the GABAA receptor antagonist, flurothyl, in which mice develop spontaneous seizures that remit within 1 month. In this model, we expose C57BL/6J mice to flurothyl until they experience a generalized seizure. Each of these generalized seizures typically lasts <30 s. We induce one seizure per day for 8 d followed by 24 h video-electroencephalographic recordings. Within 1 d following the last of eight flurothyl-induced seizures, ∼50% of mice have spontaneous seizures. Ninety-five percent of mice tested have seizures within the first week of the recording period. Of the spontaneous seizures recorded, the majority are generalized clonic seizures, with the remaining 7-12% comprising generalized clonic seizures that transition into brainstem seizures. Over the course of an 8 week recording period, spontaneous seizure episodes remit after ∼4 weeks. Overall, the repeated flurothyl paradigm is a model of epileptogenesis with spontaneous seizures that remit. This model provides an additional tool in our armamentarium for understanding the mechanisms underlying epileptogenesis and may provide insights into why spontaneous seizures remit without anticonvulsant treatment. Elucidating these processes could lead to the development of new epilepsy therapeutics. SIGNIFICANCE STATEMENT: Epilepsy is a chronic disorder characterized by the occurrence of recurrent, unprovoked seizures in which the individual seizure-ictal events are self-limiting. Remission of recurrent, unprovoked seizures can be achieved in two-thirds of cases by treatment with anticonvulsant medication, surgical resection, and/or nerve/brain electrode stimulation. However, there are examples in humans of epilepsy with recurrent, unprovoked seizures remitting without any intervention. While elucidating how recurrent, unprovoked seizures develop is critical for understanding epileptogenesis, an understanding of how and why recurrent, unprovoked seizures remit may further our understanding and treatment of epilepsy. Here, we describe a new model of recurrent, unprovoked spontaneous seizures in which the occurrence of spontaneous seizures naturally remits over time without any therapeutic intervention.


Subject(s)
Convulsants/toxicity , Flurothyl/toxicity , Seizures/chemically induced , Analysis of Variance , Animals , Anticonvulsants/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Electroencephalography , Fluoresceins/metabolism , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Seizures/drug therapy , Seizures/pathology , Time Factors , Video Recording
12.
Drug Metab Dispos ; 43(9): 1326-30, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26109562

ABSTRACT

Cytochrome P450 monooxygenases (P450s), which are well-known drug-metabolizing enzymes, are thought to play a signal transduction role in µ opioid analgesia and may serve as high-affinity (3)H-cimetidine ((3)HCIM) binding sites in the brain. (3)HCIM binding sites may also be related to opioid or nonopioid analgesia. However, of the more than 100 murine P450 enzymes, the specific isoform(s) responsible for either function have not been identified. Presently, three lines of constitutive P450 gene cluster knockout (KO) mice with full-length deletions of 14 Cyp2c, 9 Cyp2d, and 7 Cyp3a genes were studied for deficiencies in (3)HCIM binding and for opioid analgesia. Liver and brain homogenates from all three genotypes showed normal (3)HCIM binding values, indicating that gene products of Cyp2d, Cyp3a, and Cyp2c are not (3)HCIM-binding proteins. Cyp2d KO and Cyp3a KO mice showed normal antinociceptive responses to a moderate systemic dose of morphine (20 mg/kg, s.c.), thereby excluding 16 P450 isoforms as mediators of opioid analgesia. In contrast, Cyp2c KO mice showed a 41% reduction in analgesic responses following systemically (s.c.) administered morphine. However, the significance of brain Cyp2c gene products in opioid analgesia is uncertain because little or no analgesic deficits were noted in Cyp2c KO mice following intracerebroventricular or intrathecalmorphine administration, respectively. These results show that the gene products of Cyp2d and Cyp3a do not contribute to µ opioid analgesia in the central nervous system. A possible role for Cyp2c gene products in opioid analgesia requires further consideration.


Subject(s)
Analgesics, Opioid/administration & dosage , Cytochrome P-450 Enzyme System/metabolism , Isoenzymes/metabolism , Analgesics, Opioid/metabolism , Animals , Cytochrome P-450 Enzyme System/genetics , Isoenzymes/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
13.
Brain Res ; 1616: 10-8, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-25935691

ABSTRACT

Recent studies suggest a functional role for neuronal cytochrome P450 monooxygenase (P450) activity in opioid analgesia. To characterize the relevant receptors, brain areas, and circuits, detailed in vitro and in vivo studies were performed with the highly selective µ opioid receptor agonist DAMGO in neuronal P450-deficient mutant (Null) and control mice. Homogenates of brain regions and spinal cord showed no differences in DAMGO-induced activation of [(35)S]- GTPγS binding between Null and control mice, indicating no genotype differences in µ opioid receptor signaling, receptor affinities or receptor densities. Intracerebroventricular (icv) DAMGO produced robust, near-maximal, analgesic responses in control mice which were attenuated by 50% in Null mice, confirming a role for µ opioid receptors in activating P450-associated responses. Intra-periaqueductal gray (PAG) and intra-rostral ventromedial medulla (RVM) injections of DAMGO revealed deficits in Null (vs. control) analgesic responses, yet no such genotype differences were observed after intrathecal DAMGO administration. Taken with earlier published findings, the present results suggest that activation of µ opioid receptors in both the PAG and in the RVM relieves pain by mechanisms which include nerve-terminal P450 enzymes within inhibitory PAG-RVM projections. Spinal opioid analgesia, however, does not seem to require such P450 enzyme activity.


Subject(s)
Analgesics, Opioid/pharmacology , Brain/drug effects , Brain/metabolism , Cytochrome P-450 Enzyme System/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Neurons/metabolism , Nociception/drug effects , Analysis of Variance , Animals , Cytochrome P-450 Enzyme System/genetics , Dose-Response Relationship, Drug , Drug Administration Routes , Female , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics , Male , Mice , Mice, Transgenic , Microinjections , Neurons/drug effects , Periaqueductal Gray/cytology , Protein Binding/drug effects , Protein Binding/genetics , Reaction Time/drug effects , Reaction Time/genetics , Time Factors
14.
Free Radic Biol Med ; 77: 168-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25224033

ABSTRACT

The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies have failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit the release of the excitotoxic amino acids glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine, and alanine. Microdialysate delivery of 10mM tempol reduced the amino acid release by 60-80%, whereas matching levels of edaravone had no effect. In line with these data, an intracerebroventricular injection of tempol but not edaravone (500 nmol each, 15 min before MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior at removing superoxide anion, whereas edaravone was more potent at scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggest that the neuroprotective properties of tempol are probably related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke.


Subject(s)
Cyclic N-Oxides/pharmacology , Glutamic Acid/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Alanine/metabolism , Animals , Antipyrine/analogs & derivatives , Antipyrine/chemistry , Antipyrine/pharmacology , Astrocytes/metabolism , Brain/drug effects , Brain/pathology , Cells, Cultured , Cyclic N-Oxides/chemistry , Drug Evaluation, Preclinical , Edaravone , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Male , Molecular Mimicry , Neuroprotective Agents/chemistry , Oxidative Stress , Rats, Sprague-Dawley , Spin Labels , Superoxides/metabolism , Synaptosomes/drug effects , Taurine/metabolism
15.
Eur J Pharmacol ; 740: 255-62, 2014 Oct 05.
Article in English | MEDLINE | ID: mdl-25062792

ABSTRACT

Morphine-like analgesics act on µ opioid receptors in the CNS to produce highly effective pain relief, but the same class of receptors also mediates non-therapeutic side effects. The analgesic properties of morphine were recently shown to require the activity of a brain neuronal cytochrome P450 epoxygenase, but the significance of this pathway for opioid side effects is unknown. Here we show that brain P450 activity is not required for three of morphine׳s major side effects (respiratory depression, constipation, and locomotor stimulation). Following systemic or intracerebroventricular administration of morphine, transgenic mice with brain neuron - specific reductions in P450 activity showed highly attenuated analgesic responses as compared with wild-type (control) mice. However, brain P450-deficient mice showed normal morphine-induced side effects (respiratory depression, locomotor stimulation, and inhibition of intestinal motility). Pretreatment of control mice with the P450 inhibitor CC12 similarly reduced the analgesia, but not these side effects of morphine. Because activation of brain µ opioid receptors produces both opioid analgesia and opioid side effects, dissociation of the mechanisms for the therapeutic and therapy-limiting effects of opioids has important consequences for the development of analgesics with reduced side effects and/or limited addiction liability.


Subject(s)
Analgesics, Opioid/pharmacology , Brain/enzymology , Morphine/pharmacology , NADPH-Ferrihemoprotein Reductase/deficiency , Neurons/enzymology , Analgesia , Analgesics, Opioid/adverse effects , Animals , Behavior, Animal/drug effects , Body Temperature/drug effects , Female , Gastrointestinal Motility/drug effects , Male , Mice, Knockout , Morphine/adverse effects , Motor Activity/drug effects , NADPH-Ferrihemoprotein Reductase/genetics , Pain Threshold/drug effects , Respiratory Rate/drug effects
16.
Brain Res ; 1578: 30-7, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25020125

ABSTRACT

Stressful environmental changes can suppress nociceptive transmission, a phenomenon known as "stress-induced analgesia". Depending on the stressor and the subject, opioid or non-opioid mechanisms are activated. Brain µ opioid receptors mediate analgesia evoked either by exogenous agents (e.g. morphine), or by the release of endogenous opioids following stressful procedures. Recent work with morphine and neuronal cytochrome P450 (P450)-deficient mice proposed a signal transduction role for P450 enzymes in µ analgesia. Since µ opioid receptors also mediate some forms of stress-induced analgesia, the present studies assessed the significance of brain P450 activity in opioid-mediated stress-induced analgesia. Two widely-used models of opioid stress-induced analgesia (restraint and warm water swim) were studied in both sexes of wild-type control and P450-deficient (Null) mice. In control mice, both stressors evoked moderate analgesic responses which were blocked by pretreatment with the opioid antagonist naltrexone, confirming the opioid nature of these responses. Consistent with literature, sex differences (control female>control male) were seen in swim-induced, but not restraint-induced, analgesia. Null mice showed differential responses to the two stress paradigms. As compared with control subjects, Null mice showed highly attenuated restraint-induced analgesia, showing a critical role for neuronal P450s in this response. However, warm water swim-induced analgesia was unchanged in Null vs. control mice. Additional control experiments confirmed the absence of morphine analgesia in Null mice. These results are the first to show that some forms of opioid-mediated stress-induced analgesia require brain neuronal P450 activity.


Subject(s)
Analgesics, Opioid/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Morphine/pharmacology , Stress, Psychological/enzymology , Analgesia , Animals , Brain/enzymology , Cytochrome P-450 Enzyme System/genetics , Female , Male , Mice , Mice, Knockout , Motor Activity/drug effects , Neurons/enzymology , Nociception/physiology , Restraint, Physical , Swimming
17.
Eur J Pharmacol ; 714(1-3): 464-71, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23834775

ABSTRACT

Improgan, a non-opioid, antinociceptive drug, activates descending analgesic circuits following brain administration, but the improgan receptor remains unidentified. Since biotinylation of drugs can enhance drug potency or facilitate discovery of new drug targets, a biotinylated congener of improgan (CC44) and several related compounds were synthesized and tested for antinociceptive activity. In rats and mice, intracerebroventricular (i.c.v.) administration of CC44 produced dose-dependent reductions in thermal nociceptive (tail flick and hot plate) responses, with 5-fold greater potency than improgan. CC44 also robustly attenuated mechanical (tail pinch) nociception in normal rats and mechanical allodynia in a spinal nerve ligation model of neuropathic pain. Similar to the effects of improgan, CC44 antinociception was reversed by the GABAA agonist muscimol (consistent with activation of analgesic circuits), and was resistant to the opioid antagonist naltrexone (implying a non-opioid mechanism). Also like improgan, CC44 produced thermal antinociception when microinjected into the rostral ventromedial medulla (RVM). Unlike improgan, CC44 (i.c.v.) produced antinociception which was resistant to antagonism by the cannabinoid CB1 antagonist/inverse agonist rimonabant. CC44 was inactive in mice following systemic administration, indicating that CC44 does not penetrate the brain. Preliminary findings with other CC44 congeners suggest that the heteroaromatic nucleus (imidazole), but not the biotin moiety, is required for CC44's antinociceptive activity. These findings demonstrate that CC44 is a potent analgesic compound with many improgan-like characteristics. Since powerful techniques are available to characterize and identify the binding partners for biotin-containing ligands, CC44 may be useful in searching for new receptors for analgesic drugs.


Subject(s)
Analgesics/chemistry , Analgesics/pharmacology , Biotinylation , Cimetidine/analogs & derivatives , Analgesics/metabolism , Analgesics/therapeutic use , Animals , Avidin/metabolism , Cimetidine/chemistry , Cimetidine/metabolism , Cimetidine/pharmacology , Cimetidine/therapeutic use , Hyperalgesia/drug therapy , Male , Medulla Oblongata/pathology , Mice , Neurons/drug effects , Neurons/pathology , Rats , Streptavidin/metabolism
18.
Brain Res ; 1499: 1-11, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23298831

ABSTRACT

Brain cytochrome P450 epoxygenases were recently shown to play an essential role in mediating the pain-relieving properties of morphine. To identify the CNS sites containing the morphine-relevant P450s, the effects of intracerebral (ic) microinjections of the P450 inhibitor CC12 were determined on morphine antinociception in rats. CC12 inhibited morphine antinociception when both drugs were injected into the rostral ventromedial medulla (RVM), but not following co-injections into the periaqueductal gray (PAG) or into the spinal subarachnoid space. In addition, intra-RVM CC12 pretreatment nearly completely blocked the effects of morphine following intracerebroventricular (icv) administration. Although morphine is thought to act in both the PAG and RVM by pre-synaptic inhibition of inhibitory GABAergic transmission, the present findings show that 1) the mechanism of morphine action differs between these two brainstem areas, and 2) P450 activity within the RVM is important for supraspinal morphine antinociception. Characterization of morphine-P450 interactions within RVM circuits will further enhance the understanding of the biochemistry of pain relief.


Subject(s)
Analgesics, Opioid/pharmacology , Cytochrome P-450 Enzyme Inhibitors , Imidazoles/pharmacology , Medulla Oblongata/drug effects , Morphine/pharmacology , Sulfides/pharmacology , Animals , Enzyme Inhibitors/pharmacology , Male , Pain/physiopathology , Rats , Rats, Sprague-Dawley
19.
J Neurophysiol ; 108(9): 2393-404, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22956800

ABSTRACT

Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the µ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. Blocking opioid action in the RVM by microinjecting the opioid antagonist naltrexone reversed the analgesic and respiratory effects of systemically administered morphine, showing that this region plays a role in both the analgesic and respiratory-depressant properties of systemically administered morphine. The distribution of neurons directly inhibited by RVM opioid microinjection was determined with a fluorescent opioid peptide, dermorphin-Alexa 594, and found to be concentrated in and around the RVM. The non-opioid analgesic improgan, like DAMGO, produced antinociception but, unlike DAMGO, stimulated breathing when microinjected into the RVM. Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.


Subject(s)
Analgesics, Opioid/toxicity , Medulla Oblongata/drug effects , Neurons/physiology , Nociceptive Pain/physiopathology , Respiratory Insufficiency/chemically induced , Analgesics, Opioid/antagonists & inhibitors , Animals , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/antagonists & inhibitors , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Evoked Potentials/drug effects , Evoked Potentials/physiology , Male , Medulla Oblongata/cytology , Medulla Oblongata/physiology , Morphine/antagonists & inhibitors , Morphine/pharmacology , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Neurons/drug effects , Nociception/drug effects , Nociception/physiology , Rats , Rats, Sprague-Dawley , Respiratory Insufficiency/physiopathology
20.
Brain Res ; 1424: 32-7, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22015352

ABSTRACT

Improgan, a non-opioid analgesic, is known to act in the rodent brain stem to produce highly effective antinociception in several acute pain tests. However, improgan has not been studied in any models of chronic pain. To assess the efficacy of improgan in an animal model of neuropathic pain, the effects of this drug were studied on mechanical allodynia following unilateral spinal nerve ligation (SNL) in rats. Intracerebroventricular (icv) improgan (40-80 µg) produced complete, reversible, dose-dependent attenuation of hind paw mechanical allodynia for up to 1h after administration, with no noticeable behavioral or motor side effects. Intracerebral (ic) microinjections of improgan (5-30 µg) into the rostral ventromedial medulla (RVM) also reversed the allodynia, showing this brain area to be an important site for improgan's action. The recently-demonstrated suppression of RVM ON-cell activity by improgan may account for the presently-observed anti-allodynic activity. The present findings suggest that brain-penetrating, improgan-like drugs developed for human use could be effective medications for the treatment of neuropathic pain.


Subject(s)
Analgesics, Non-Narcotic/administration & dosage , Cimetidine/analogs & derivatives , Neuralgia/drug therapy , Animals , Axotomy , Chronic Pain/drug therapy , Cimetidine/administration & dosage , Injections, Intraventricular , Male , Medulla Oblongata/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...