Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 20(7): 4344-4348, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968471

ABSTRACT

In2O3/SnO2 composite nanoparticles (NPs) were synthesized by a hydrothermal method. Fringes and spotty patterns were observed in high-resolution TEM images and corresponding selected area electron diffraction pattern, respectively, suggesting the nanoparticles were single crystals. X-ray diffraction results revealed that the In2O3/SnO2 composite NP sensor consisted of three phases: In2O3, SnO2 and In2Sn2O7-x (indium tin oxide: ITO). Energy-dispersive X-ray spectrum of the 9:1 In2O3/SnO2 composite NPs showed the atomic ratio of In2O3 to SnO2 was close to 9:1. The response of the chemiresistive sensor to CO was 9.2, which is within the highest 15% among the response values reported for the past 10 years. The ITO NP-based gas sensor is selective toward CO against other reducing gases such as toluene, acetone and benzene. The enhanced response of the 9:1 In2O3/SnO2 composite NP sensor to CO compared to the pure In2O3 NP sensor can be explained mainly by the stronger resistance modulation at the In2O3/SnO2 junctions.

2.
Nano Converg ; 6(1): 40, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31832881

ABSTRACT

In2O3 nanoparticle (NP)-decorated WO3 nanorods (NRs) were prepared using sol-gel and hydrothermal methods. The In2O3 NRs and WO3 NPs were crystalline. WO3 NP-decorated In2O3 NRs were also prepared using thermal evaporation and hydrothermal methods. The NO2 sensing performance of the In2O3 NP-decorated WO3 NR sensor toward NO2 was compared to that of the WO3 NP-decorated In2O3 NR sensor. The former showed a high response to NO2 due to a significant reduction of the conduction channel width upon exposure to NO2. In contrast, the latter showed a far less pronounced response due to limited reduction of the conduction channel width upon exposure to NO2. When the sensors were exposed to a reducing gas instead of an oxidizing gas (NO2), the situation was reversed, i.e., the WO3 NP-decorated In2O3 NR exhibited a stronger response to the reducing gas than the In2O3 NP-decorated WO3 NR sensor. Thus, a semiconducting metal oxide (SMO) with a smaller work function must be used as the decorating material in decorated heterostructured SMO sensors for detection of oxidizing gases. The In2O3 NP-decorated WO3 NR sensor showed higher selectivity for NO2 compared to other gases, including reducing gases and other oxidizing gases, as well as showed high sensitivity to NO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...