Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Infect Genet Evol ; 58: 232-236, 2018 03.
Article in English | MEDLINE | ID: mdl-29307769

ABSTRACT

To elucidate the epidemicity of carbapenem-resistant Acinetobacter baumannii (CRAB), we investigated the antimicrobial susceptibility, the genetic basis of antimicrobial resistance, and the ability to form biofilms of 147 CRAB isolates collected between 2013 and 2015 from a Korean hospital based on sequence types (STs). Six different STs were identified: ST191 (n=47) and ST208 (n=36) were clones that had already been identified in the study hospital, whereas ST229 (n=28), ST369 (n=18), ST357 (n=17), and ST552 (n=1) were previously unknown. All the CRAB isolates exhibited an extensively drug-resistance. Twelve isolates, including ST191 and ST208, were resistant to tigecycline, and two were resistant to colistin. All the isolates carried ISAbaI-blaOXA-23 structures. The presence of the armA gene and/or a combination of aminoglycoside-modifying enzyme genes (aacC1, aadA1, aacA4, aphA1, and aphA6) was responsible for high-level resistance to aminoglycosides (minimal inhibitory concentrations≥256mg/L). All the ST229 isolates carried the blaPER-1 gene, whereas all the ST357 and ST369 isolates carried both aacA4 and aadA1. The ST229 isolates exhibited the greatest tendency to form biofilms, whereas the ST369 isolates exhibited significantly less tendency to form biofilms than other isolates. In conclusion, we discovered clonal diversity in the CRAB isolates from the study hospital. The resistant gene profiles and biofilm formation capabilities of the emerging CRAB STs differed from those of the circulating STs. The potential relationship between these genotypic and phenotypic traits and the epidemic capacity of CRAB STs requires further investigation.


Subject(s)
Acinetobacter Infections/epidemiology , Acinetobacter Infections/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Carbapenems/pharmacology , beta-Lactam Resistance , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Genotype , Humans , Multilocus Sequence Typing , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...